

Public Works Traffic Analysis Comments

Date: 8-14-2024

Subject: Hyatt House - Trip Generation

Permit: PLAN-2312-0066

Date Submitted: 8-12-2024

6th Review

Results of the Review:

Χ

Traffic Approval Recommended

Doral Public Works Department has completed its review of the Trip Generation Letter prepared by TrafTech Engineering, Inc. for the proposed 126-room hotel (Hyatt House) located on the south side of NW 19th St and NW 102nd Ave in Doral, Florida. At this time, the applicant is proposing 126-room hotel (LUC 310). The existing land use is vacant. The Public Works Department recommends approval. Advisory comments below are necessary during site plan review process and implementation of the project:

- Please note that if there is any change in the approved Land Use during building permit application, a traffic analysis/trip generation comparison may be required for review.
- Approval is subject to review from City of Doral Public Works Department Plans Review.
- Compliance with the applicable sections of the City's Land Development Code Chapter 77.
- Implementation of the proposed project dealing with roadway construction work, installation of signage, pavement
 markings and other needed items shall conform to all applicable requirements, standards and regulations of the latest
 version of the Manual on Uniform Traffic Control Devices (MUTCD), City of Doral, Miami-Dade County Department of
 Transportation and Public Works, and Miami-Dade Fire Rescue Department.

Date: Tuesday, August 6, 2024

Subject: DR 2024003541

Applicant Name: Hyatt House

PROJECT DESCRIPTION

The proposed development consists of a 126-room hotel (Hyatt House). The project site is currently vacant. Access to the site is provided via one existing right-turn in/right-turn out driveway off of NW 19th Street. The Hyatt Hotel will share the driveway with an existing hotel (Residence Inn) located immediately west of the Hyatt Hotel site. The project is anticipated to be built and occupied in the year 2026.

PROJECT LOCATION

The proposed development will be located on the southwest corner of the intersection of NW 19th Street and NW 102nd Avenue in the City of Doral.

COMMENTS/RECOMMENDATION

Miami-Dade County Department of Transportation and Public Works (DTPW) Traffic Engineering Division has reviewed the subject application and has no objections to this application, subject to the following condition:

1. According to the latest FDOT FDM manual Section 212.11.6, trees may not be placed within the hatched-out areas of the sight triangles, as illustrated in the figure below.

If you have any questions concerning the comments, or wish to discuss this matter further, please contact Leanne Garcia Fernandez at (305) 439-6491.

Hyatt House

Southwest Corner – NW 102nd Avenue & NW 19th Street
Doral, Florida

prepared for:

Baywood Hotels

traffic study

July 10, 2024

Mr. Larry Rojas Senior Director of Development **Baywood Hotels** 3785 NW 82nd Avenue, Suite #204 Miami, Florida 33166

Re: Hyatt House - Doral, Florida Traffic Engineering Study Level One

Dear Larry:

Traf Tech Engineering, Inc. is pleased to provide you with the results of the traffic evaluation in connection with a proposed 126-room hotel (Hyatt House) development planned to be located on the south side of NW 19th Street just west of NW 102nd Avenue in the City of Doral, Miami-Dade County, Florida. Figure 1 shows the location of the project site and the surrounding street system.

Project Description and Access

The project site is currently vacant (the site does not require to plat). The following land use and intensity is proposed for the site:

Hotel: 126 rooms

Access to the site is provided via one existing right-turn in/right-turn out driveway off of NW 19th Street. The Hyatt Hotel will share the driveway with an existing hotel (Residence Inn) located immediately west of the Hyatt Hotel site. A copy of the site plan is contained in Attachment A. The drop-off area shown on the site plan is for UBER, LYFT or for the temporary drop-off/pick up of passengers (not for valet purposes). For purposes of this traffic evaluation, the project is anticipated to be built and occupied in the year 2026. The following tasks were undertaken as part of this evaluation:

 Documented the existing lane geometry of the study area. A total of five intersections including the project driveway were evaluated as part of this evaluation. Figure 2 depicts the existing lane geometry of the study intersections.

- Collected intersection turning movement counts during the critical peak periods (7:00 AM to 9:00 AM) and (4:00 PM to 6:00 PM) at the following locations:
 - NW 107th Avenue & NW 19th Street (signalized)
 - NW 19th Street & Full median opening (stop controlled)
 - NW 19th Street & project driveway (stop controlled)
 - NW 19th Street & NW 102nd Avenue (stop controlled)
 - NW 97th Avenue & NW 17th Street (signalized)

The above traffic counts were recorded on Wednesday, January 24, 2024. The traffic counts were adjusted by utilizing a peak season factor of 1.04 based on FDOT's peak season adjustment factors. Figure 3 shows the results of the AM and PM peak hour traffic counts. These traffic counts are included in Attachment B.

- Obtained the signal timing plan from Miami-Dade County Traffic Engineering Division. Attachment B contains the signal timing plan for the signalized intersection located within the study area.
- Determined the trip generation of the proposed land use intensity using the trip generation equations/rates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual (11th Edition). Tables 1 documents the trip generation associated with the proposed hotel.

		•	TABLE 1 neration Summ Hyatt House	ary										
Daily AM Peak Hour PM Peak Hour														
Land Use	Size	Trips	Total Trips	Inbound	Outbound	Total Trips	Inbound	Outbound						
Hotel (LUC 310)	126 rooms	942	56	31	25	65	33	32						
Net External Trips		942	56	31	25	65	33	32						

Source: ITE Trip Generation Manual (11th Edition)

ITE Land Use Code 310 - Hotel

Daily Trips: T = 10.84 (X) - 423.51, X = number of rooms

AM Peak: T = 0.50 (X) - 7.45 (56% inbound and 44% outbound), X = number of roomsPM Peak: T = 0.74 (X) - 27.89 (51% inbound and 49% outbound), X = number of rooms

ITE Land Use Code 822 - Retail (<40k) Daily Trips: T = 54.45 (X), X = 1,000 sf

AM Peak: T = 2.36 (X) (60% inbound and 40% outbound), X = 1,000 sf)
PM Peak: T = 6.59 (X) (50% inbound and 50% outbound), X = 1,000 sf)

 As indicated in Table 1, the 126-room hotel development is projected to generate approximately 942 daily trips, approximately 56 AM peak hour

trips (31 inbound and 25 outbound) and approximately 65 trips during the typical afternoon peak hour (33 inbound and 32 outbound).

o The project's peak-hour trips documented in Table 2 were distributed and assigned to the study area based on Miami-Dade County's Cardinal Distribution information for the study area. Table 2 summarizes the County's cardinal distribution data for Traffic Analysis Zone 828, which is applicable the project site from the latest SERPM data published by Miami-Dade County.

				TABLE 2 Trip Disti 828 Hyatl	ibution											
Voor		Movement														
Year	NNE															
2015	14.3%	16.4%	14.7%	13.0%	18.3%	9.4%	5.1%	9.0%								
2045	14.9%	18.3%	14.2%	12.2%	17.3%	8.2%	6.7%	8.2%								
2026*	14.5%	17.1%	14.5%	12.7%	17.9%	9.0%	5.7%	8.7%								

Note: * Interpolated Values

Source: Miami-Dade County (2015 & 2045 SERPM)

Project traffic was distributed as follows:

- 15% from the north via NW 107th Avenue
- 27% to the south via NW 107th Avenue
- 14% to the north via NW 102nd Avenue
- 17% to the north via NW 97th Avenue
- 27% to the south via NW 97th Avenue

Figure 4 documents the project traffic assignment based on the above traffic percentages.

Figures 5 and 6 present the future traffic volumes for the study area. Figure 5 includes background traffic only (without the proposed project) and Figure 6 includes the additional traffic anticipated to be generated by the proposed development.

- The background traffic includes peak season adjustment factor, traffic growth based on historical traffic data (from 2013 to 2022) within the study area. The future traffic projections for the study intersections are presented in tabular format in Attachment D.
- o In order to determine the impacts created by the proposed hotel to the study intersections and project driveway, capacity/level of service analyses were undertaken using the SYNCHRO software. The results of the capacity/level of service analyses are presented in Table 3. The SYNCHRO outputs are contained in Attachment E.

				Lev	TABLE 3 rel of Service Analys Hyatt House	es					
Intersection	Time Period		EASTBOUND Approach		WESTBOUND Approach		ORTHBOUND Approach		UTHBOUND Approach	Intersection LOS	Intersection Delay (sec)
		LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay		
101: NW 107th Avenue & NW 19th Street	AM			F/F/F (E)	188.8/210.1/222.3 (75.7)	B/B/B/ (C)	17.5/18.6/18.7 (31.4)	C/D/D (C)	32.8/42.0/45.2 (24.7)	D/D/D (C)	40.0/45.6/48.4 (34.2)
101: NW 107th Avenue & NW 19th Street	PM			F/F/F (F)	354.7/388.2/405.7 (148.5)	A/A/A (B)	8.5/8.8/8.8 (13.7)	A/A/A (A)	4.4/4.7/4.8 (8.1)	E/E/E (C)	61.8/67.4/71.3 (32.9)
102: Full Median Opening & NW 19th Street	AM			WBL	A/9.4- A/9.5-A/9.7	B/B/B	11.0/11.2/11.4	B/B/B	11.8/12.1/12.5		
102. Full Median Opening & NW 15th Street	PM			WBL	A/9.0 -A/9.2-A/9.4	B/B/B	10.3/10.5/10.7	B/B/B	10.9/11.1/11.4		
103: Driveway & NW 19th Street	AM					A/A/A	9.1/9.3/9.4				
103: Driveway & NW 19th Street	PM					A/A/A	8.9/8.9/9.2				
104: NW 102nd Avenue & NW 19th	AM	D/E/E	31.9/36.3/41.6	F/F/F	53.6/69.0/76.5	B/B/B	14.3/14.8/15.0	C/D/D	23.7/26.2/27.3	E/E/F	37.5/45.3/50.4
Street/NW 17th Street	PM	C/D/D	22.4/25.7/28.2	C/C/D	20.5/23.0/25.2	B/C/C	14.4/15.1/15.5	C/C/C	20.1/22.4/23.8	C/C/D	20.6/23.2/25.3
105: NW 97th Avenue & NW 17th Street	AM	D/D/D	50.3/52.7/53.9			A/A/A	7.7/8.8/9.3	B/B/B	13.9/14.6/14.8	B/B/B	16.8/18.1/18.7
100: NW 97th Avenue & NW 17th Street	PM	F/F/F (F)	319.2/341.3/345.0 (258.0)			A/A/A (A)	4.2/5.9/6.9 (9.2)	A/B/B (B)	9.1/10.3/10.6 (14.4)	E/E/F (E)	72.6/78.4/80.6 (64.6)
SOURCE: SYNCHRO. LEGEND: 2024 Existing /2	2026 Back	ground/202	6 Future Total (2026 Future w	ith imp)							

In summary, and as presented in Table 3, in the year 2026 with the proposed project in place, all the study intersections are expected to operate at acceptable levels of services, except for three intersections.

NW 107th Avenue & NW 19th Street is expected to fail during the PM peak hours, NW 102nd Avenue & NW 19th Street is expected to fail during the AM peak hour, and NW 97th Avenue & NW 17th Street is expected to fail during the PM peak hour. These three intersections are expected to operate deficiently without the project in place (i.e., background failures). Furthermore, the increase in delay due to the project trips is than five seconds.

However, the implementation of a westbound right-turn overlap and signal optimization is recommended for the intersection of NW 107th Avenue & NW 19th Street to reduce the increase in delay due to the project trips. The optimized timings are contained in Attachment E.

Also, minor signal timing improvements are recommended for the intersection of NW 97th Avenue and NW 17th Street. Refer to Attachment E for details of the signal timing improvements.

The project driveway is expected to operate at acceptable levels of services as proposed.

Table 4 summarizes the 95th percentile vehicle queue at the turning bays affected by the proposed project trips.

			••	ABLE 4 tt House entile Que	eues				
		NO	DRTHBOUND		SOUTHBOUND	EAS	TBOUND	WE	STBOUND
Intersection	Time		L		L		L		L
coccuo.	Period	Storage (ft)	95th percentile (ft)	Storage (ft)	95th percentile (ft)	Storage (ft)	95th percentile (ft)	Storage (ft)	95th percentile (ft)
101: NW 107th Avenue & NW 19th Street	AM			150	#531/#590/#606(425) *				
101: NW 107th Avenue & NW 19th Street	PM			150	70/74/85 (131)				
103. Full Madison Occasion & NIM 10kh Charact	AM							125	4/4/6
102: Full Median Opening & NW 19th Street	PM							125	10/12/14
104: NW 102nd Avenue & NW 19th Street/NW 17th	AM						166/184/210*		
Street	PM					150	14/16/22		
	AM	400	#151/#196/#213 *						
105: NW 97th Avenue & NW 17th Street	PM	100	#249/#268/#286 *						
*Queues extend beyond the storage bay	•								
# 95th percentile volume exceeds capacity, queue n m Volume for 95th percentile queue is metered by			own is maximum after	two cycles.					
LEGEND: 2024 Existing /2026 Background/2026 Future	Total (2026	Future with i	mp)						

Turn Lane Evaluation

A turn lane analysis was performed following the guidelines included in the City of Doral Code of Ordinances, Chapter 77, Section 77-46 Turn Lane Analysis.

- Left turn lanes: A left turn lane with a minimum of this Land Development Code 150 feet of storage and 100 feet of transition shall be provided at each access point with an average daily trip end (volume) of 1,000 vehicles or more, and/or an average peak hour inbound left turn volume of 25 vehicles or more. Increased storage and transition lengths may be required by the city to provide for all deceleration outside the through lane.
- **Right turn deceleration lanes:** A right turn deceleration lane with a minimum of 150 feet of storage and 100 feet of transition shall be required at each access point when the speed limit equals or exceeds 35 miles per hour or if

the development will generate 100 or more right turn movements during the peak hour. Increased storage and transition lengths may be required by the city to provide for all deceleration outside the through lane.

Based on the anticipated peak hour trips for the driveway at build-out conditions (refer to Figure 6), a dedicated right-turn lane is not warranted at the shared access driveway since the maximum right-turning volume anticipated is 42 vehicles in a one-hour period. Additionally, even though the speed limit is 35 miles per hour, traffic volumes are low on NW 19th Street for a four-lane roadway.

Pedestrian Features and Transit Routes

In reviewing the immediate area within the subject hotel site, the following pedestrian features are found:

- Existing sidewalks along the north and south sides of NW 19th Street. However, there is a missing piece of sidewalk around the northeast corner of the Hyatt Hotel site. The missing sidewalk should be incorporated into the site plan.
- Pedestrian crosswalks to cross all legs are provided at the all-way stop control intersection of NW 19th Street and NW 102nd Avenue.
- Pedestrian crosswalks on the east leg with pedestrian ramps are provided at the signalized intersection of NW 107th Avenue and NW 19th Street.

Miami-Dade County Transit Route 36 travels north and south along NW 107th Avenue. The closest bus stop from the Hyatt Hotel is located approximately one-half mile from the project site (at the intersection of NW 107th Avenue and NW 19th Street. Figures 7a and 7b show the pedestrian features and nearby bus stops near the hotel site.

Summary of Proposed Improvements

Based on the results of this traffic evaluation the following improvements are recommended:

- Implementation of a westbound right-turn overlap is recommended for the intersection of NW 107th Avenue & NW 19th Street.
- Minor signal timing improvements are recommended for the intersection of NW 97th Avenue and NW 17th Street.

Please give me a call if you have any questions.

Sincerely,

TRAFTECH ENGINEERING, INC

Joaquin E. Vargas, P.E.

Senior Transportation Engineer

TRAFTECH ENGINEERING, INC.

EXISTING LANE GEOMETRY

Hyatt House Doral, Florida

EXISTING TRAFFIC COUNTS - AM & (PM) Peak Hour

FIGURE 3 Hyatt House Doral, Florida

NEW PROJECT TRAFFIC DISTRIBUTION Weekday New Peak Hour Trips AM & (PM)

FIGURE 4A
Hyatt House
Doral, Florida

NEW PROJECT TRAFFIC ASSIGNMENT Weekday New Peak Hour Trips AM & (PM)

FIGURE 4B Hyatt House Doral, Florida

2026 BACKGROUND TRAFFIC - AM & (PM) Peak Hour

FIGURE 5
Hyatt House
Doral, Florida

2026 FUTURE TRAFFIC - AM & (PM) Peak Hour

FIGURE 6 Hyatt House Doral, Florida

Pedestrian Features

FIGURE 7aHyatt House
Doral, Florida

Pedestrian Features

FIGURE 7bHyatt House
Doral, Florida

Attachement A

Site Plan Hyatt House

Attachement B Traffic Counts and Signal Timing

File Name: 5- NW 97th Ave & NW 17th St

Site Code : 00000000 Start Date : 1/24/2024

Groups Printed- Auto	s - Heavy Vehicles

		NW	/ 97th	Ave				17th		u- Auto	3 110		V 97th				NW	17th \$	Street		
			om N					rom E					rom So					rom W			
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
07:00	22	88	0	0	110	0	0	0	0	0	0	291	91	0	382	37	0	24	0	61	553
07:15	28	107	0	0	135	0	0	0	0	0	0	244	75	0	319	51	0	37	0	88	542
07:30	32	93	0	0	125	0	0	0	0	0	0	310	89	0	399	56	0	40	1	97	621
07:45	35	95	0	0	130	0	0	0	0	0	0	256	127	1_	384	69	0	33	0	102	616
Total	117	383	0	0	500	0	0	0	0	0	0	1101	382	1	1484	213	0	134	1	348	2332
	٠		_	_			_	_	_	_				_			_		_		
08:00	40	123	0	0	163	0	0	0	0	0	1	243	136	0	380	79	0	55	0	134	677
08:15	38	166	0	0	204	0	0	0	0	0	0	255	84	0	339	82	0	48	0	130	673
08:30	42	119	0	0	161	0	0	0	0	0	0	241	72	0	313	71	0	37	0	108	582
08:45	29	124	0	0	153	0	0	0	0	0	1	212	76	0	289	44	0	28	0	72	514
Total	149	532	0	0	681	0	0	0	0	0	2	951	368	0	1321	276	0	168	0	444	2446
*** BREAK *	**																				
16:00	29	266	0	0	295	0	0	0	0	0	0	175	42	1	218	109	0	51	0	160	673
16:15	32	249	0	0	281	0	0	0	0	0	0	163	46	0	209	98	0	44	2	144	634
16:30	30	303	0	0	333	0	0	0	0	0	0	211	56	1	268	110	0	38	1	149	750
16:45	21	286	0	0	307	0	0	0	0	0	0	177	43	0	220	109	0	39	1	149	676
Total	112	1104	0	0	1216	0	0	0	0	0	0	726	187	2	915	426	0	172	4	602	2733
17:00	24	343	0	0	367	0	0	0	0	0	0	206	60	0	266	150	0	42	2	194	827
17:15	22	324	0	0	346	0	0	0	0	0	0	206	60	0	266	129	0	30	1	160	772
17:13	25	341	0	0	366	0	0	0	0	0	0	191	50	0	241	137	0	34	0	171	778
17:45	30	301	0	0	331	0	0	0	0	0	0	179	54	0	233	93	0	25	0	118	682
Total	101	1309	0	0	1410	0	0	0	0	0	0	782	224	0	1006	509	0	131	3	643	3059
rotar	,	1000	Ū	Ů		, ,	·	Ŭ	Ü	Ū		. 02		Ü	1000	000	Ů		Ŭ	0.10	0000
Grand Total	479	3328	0	0	3807	0	0	0	0	0	2	3560	1161	3	4726	1424	0	605	8	2037	10570
Apprch %	12.6	87.4	0	0		0	0	0	0		0	75.3	24.6	0.1		69.9	0	29.7	0.4		
Total %	4.5	31.5	0	0	36	0	0	0	0	0	0	33.7	11	0	44.7	13.5	0	5.7	0.1	19.3	
Autos	440	3284										3518	1142			1404					10349
% Autos	91.9	98.7	0	0	97.8	0	0	0	0	0	100	98.8	98.4	100	98.7	98.6	0	90.6	100	96.2	97.9
Heavy Vehicles																					
% Heavy Vehicles	8.1	1.3	0	0	2.2	0	0	0	0	0	0	1.2	1.6	0	1.3	1.4	0	9.4	0	3.8	2.1

File Name: 5- NW 97th Ave & NW 17th St

Site Code : 00000000 Start Date : 1/24/2024

File Name: 5- NW 97th Ave & NW 17th St

Site Code : 00000000 Start Date : 1/24/2024

		NV	/ 97th	Ave			NW	17th \$	Street			NV	V 97th	Ave			NW	17th 9	Street		
		Fr	om No	orth			F	rom E	ast			Fr	om So	outh			Fr	rom W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	07:00) to 17:	:45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ns at 17	7:00															
17:00	24	343	0	0	367	0	0	0	0	0	0	206	60	0	266	150	0	42	2	194	827
17:15	22	324	0	0	346	0	0	0	0	0	0	206	60	0	266	129	0	30	1	160	772
17:30	25	341	0	0	366	0	0	0	0	0	0	191	50	0	241	137	0	34	0	171	778
17:45	30	301	0	0	331	0	0	0	0	0	0	179	54	0	233	93	0	25	0	118	682
Total Volume	101	1309	0	0	1410	0	0	0	0	0	0	782	224	0	1006	509	0	131	3	643	3059
% App. Total	7.2	92.8	0	0		0	0	0	0		0	77.7	22.3	0		79.2	0	20.4	0.5		
PHF	.842	.954	.000	.000	.960	.000	.000	.000	.000	.000	.000	.949	.933	.000	.945	.848	.000	.780	.375	.829	.925
Autos	94	1297																			
% Autos	93.1	99.1	0	0	98.7	0	0	0	0	0	0	99.4	95.1	0	98.4	99.6	0	93.1	100	98.3	98.5
Heavy Vehicles																					
% Heavy Vehicles	6.9	0.9	0	0	1.3	0	0	0	0	0	0	0.6	4.9	0	1.6	0.4	0	6.9	0	1.7	1.5

File Name: 5- NW 97th Ave & NW 17th St

Site Code : 00000000 Start Date : 1/24/2024

			/ 97th					17th \$					√ 97th					17th 9			
		Fr	om No	orth			F	<u>rom E</u>	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	Analysi	s From	o7:00) to 08:	:45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ns at 0	7:30															
07:30	32	93	0	0	125	0	0	0	0	0	0	310	89	0	399	56	0	40	1	97	621
07:45	35	95	0	0	130	0	0	0	0	0	0	256	127	1	384	69	0	33	0	102	616
08:00	40	123	0	0	163	0	0	0	0	0	1	243	136	0	380	79	0	55	0	134	677
08:15	38	166	0	0	204	0	0	0	0	0	0	255	84	0	339	82	0	48	0	130	673
Total Volume	145	477	0	0	622	0	0	0	0	0	1	1064	436	1	1502	286	0	176	1	463	2587
% App. Total	23.3	76.7	0	0		0	0	0	0		0.1	70.8	29	0.1		61.8	0	38	0.2		
PHF	.906	.718	.000	.000	.762	.000	.000	.000	.000	.000	.250	.858	.801	.250	.941	.872	.000	.800	.250	.864	.955
Autos	135	466	0	0	601	0	0	0	0	0	1	1055									
% Autos	93.1	97.7	0	0	96.6	0	0	0	0	0	100	99.2	99.5	100	99.3	96.2	0	89.2	100	93.5	97.6
Heavy Vehicles																					
% Heavy Vehicles	6.9	2.3	0	0	3.4	0	0	0	0	0	0	8.0	0.5	0	0.7	3.8	0	10.8	0	6.5	2.4

File Name: 5- NW 97th Ave & NW 17th St

Site Code : 00000000 Start Date : 1/24/2024

			/ 97th om No					17th S					V 97th					17th S rom W			
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	,						of 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ins at 1	7:00															
17:00	24	343	0	0	367	0	0	0	0	0	0	206	60	0	266	150	0	42	2	194	827
17:15	22	324	0	0	346	0	0	0	0	0	0	206	60	0	266	129	0	30	1	160	772
17:30	25	341	0	0	366	0	0	0	0	0	0	191	50	0	241	137	0	34	0	171	778
17:45	30	301	0	0	331	0	0	0	0	0	0	179	54	0	233	93	0	25	0	118	682
Total Volume	101	1309	0	0	1410	0	0	0	0	0	0	782	224	0	1006	509	0	131	3	643	3059
% App. Total	7.2	92.8	0	0		0	0	0	0		0	77.7	22.3	0		79.2	0	20.4	0.5		
PHF	.842	.954	.000	.000	.960	.000	.000	.000	.000	.000	.000	.949	.933	.000	.945	.848	.000	.780	.375	.829	.925
Autos	94	1297																			
% Autos	93.1	99.1	0	0	98.7	0	0	0	0	0	0	99.4	95.1	0	98.4	99.6	0	93.1	100	98.3	98.5
Heavy Vehicles																					
% Heavy Vehicles	6.9	0.9	0	0	1.3	0	0	0	0	0	0	0.6	4.9	0	1.6	0.4	0	6.9	0	1.7	1.5

File Name: 4- NW 102nd Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

Page No : 1

Groups Printed- Peds & Bikes

	ı	NW 102	2nd Ave			NW 19th	n Street				2nd Ave			NW 19t	h Street		
		From	North			From	East			From	South			From	West		
Start Time	Bikes			Peds	Bikes			Peds	Bikes			Peds	Bikes			Peds	Int. Total
07:00	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
07:15	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	2
07:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
07:45	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	11_
Total	0	0	0	2	0	0	0	1	0	0	0	1	0	0	0	1	5
*** BREAK ***													ı				ı
08:45	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	2
Total	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	2
*** BREAK ***																	
16:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
*** BREAK ***																	
16:45	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	3
Total	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	3
17:00	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	4
17:15	0	0	0	1	0	ő	Ö	0	1	0	0	0	1	0	0	i 1	4
*** BREAK ***		_		- '	_	-	_	_				_		_	_	•	
Total	1	0	0	1	0	0	0	0	2	0	0	1	1	0	0	2	8
Grand Total	1 1	0	0	3	1	0	0	1	5	0	0	2	2	0	0	3	18
Apprch %	25	Ö	Ö	75	50	Ö	Ö	50	71.4	0	Ö	28.6	40	Ö	Ö	60	
Total %	5.6	0	0	16.7	5.6	0	0	5.6	27.8	0	0	11.1	11.1	0	0	16.7	

File Name: 4- NW 102nd Ave & NW 19th St

8.6 1 1.9 3.7

2.4

3.7

Site Code : 00000000 Start Date : 1/24/2024

Page No : 1

							G	roups	Printe	d- Auto	s - He	avv V	ehicles	3							
		NW	102nc	d Ave				19th S					102n				NW	19th \$	Street]
		Fı	om No	orth			F	rom E	ast			Fr	om So	outh			Fı	rom W	est /		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
07:00	5	1	7	0	13	27	60	2	0	89	1	1	1	0	3	4	48	20	0	72	177
07:15	6	1	6	0	13	32	48	1	0	81	1	5	3	0	9	2	73	39	1	115	218
07:30	17	3	30	0	50	55	59	0	0	114	1	2	1	0	4	1	64	41	0	106	274
07:45	23	3	35	0	61	67	58	1	0	126	3	2	1	0	6	6	58	53	0	117	310
Total	51	8	78	0	137	181	225	4	0	410	6	10	6	0	22	13	243	153	1	410	979
08:00	34	5	58	0	97	84	72	4	0	160	0	4	2	0	6	9	88	87	0	184	447
08:15	43	11	55	0	109	63	69	0	0	132	0	2	3	0	5	9	90	78	0	177	423
08:30	21	3	36	0	60	46	60	1	0	107	0	4	2	0	6	18	66	55	0	139	312
08:45	15	5	15	0	35	34	60	3	0	97	3	2	2	0	7	17	48	32	0	97	236
Total	113	24	164	0	301	227	261	8	0	496	3	12	9	0	24	53	292	252	0	597	1418
*** BREAK *	**																				
16:00	35	3	46	0	84	28	66	1	0	95	2	1	5	0	8	5	68	19	0	92	279
16:15	29	1	26	0	56	25	63	1	0	89	1	2	9	0	12	2	62	13	0	77	234
16:30	39	8	41	0	88	29	85	1	1	116	1	5	10	0	16	2	71	18	0	91	311
16:45	36	5	33	0	74	19	65	0	1_	85	3	6	7	0	16	3	83	19	0	105	280
Total	139	17	146	0	302	101	279	3	2	385	7	14	31	0	52	12	284	69	0	365	1104
17:00	50	6	49	0	105	30	78	2	0	110	3	5	26	0	34	2	108	18	0	128	377
17:15	38	5	44	0	87	29	60	0	0	89	3	7	8	0	18	4	83	17	0	104	298
17:30	48	5	55	0	108	31	77	0	0	108	4	4	12	0	20	7	101	13	0	121	357
17:45	31	5	22	0	58	19	70	1	0	90	7	4	6	0	17	6	69	18	0	93	258
Total	167	21	170	0	358	109	285	3	0	397	17	20	52	0	89	19	361	66	0	446	1290
Grand Total	470	70	558	0	1098	618	1050	18	2	1688	33	56	98	0	187	97	1180	540	1	1818	4791
Apprch %	42.8	6.4	50.8	0	1000	36.6	62.2	1.1	0.1	1000	17.6	29.9	52.4	0	101	5.3	64.9	29.7	0.1	1010	7/51
Total %	9.8	1.5	11.6	0	22.9	12.9	21.9	0.4	0.1	35.2	0.7	1.2	2	0	3.9	2	24.6	11.3	0.1	37.9	
Autos	450	59	532	0	1041	581	1025			00.2	0.7	1.2			5.5		1158	11.0		01.0	
% Autos	95.7	84.3	95.3	0	94.8	94	97.6	94.4	100	96.3	93.9	83.9	94.9	0	91.4	99	98.1	96.3	100	97.6	96.3

3.7 6.1 16.1 5.1

5.2 6 2.4 5.6

% Heavy Vehicles 4.3 15.7 4.7

File Name: 4- NW 102nd Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

File Name: 4- NW 102nd Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

			102nd					19th_5					102n					19th \$			
		⊢r	om No	orth			F	rom E	<u>ast</u>			<u> </u>	om So	outh			<u> Fr</u>	om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A							f 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ns at 0	7:45															
07:45	23	3	35	0	61	67	58	1	0	126	3	2	1	0	6	6	58	53	0	117	310
08:00	34	5	58	0	97	84	72	4	0	160	0	4	2	0	6	9	88	87	0	184	447
08:15	43	11	55	0	109	63	69	0	0	132	0	2	3	0	5	9	90	78	0	177	423
08:30	21	3	36	0	60	46	60	1	0	107	0	4	2	0	6	18	66	55	0	139	312
Total Volume	121	22	184	0	327	260	259	6	0	525	3	12	8	0	23	42	302	273	0	617	1492
% App. Total	37	6.7	56.3	0		49.5	49.3	1.1	0		13	52.2	34.8	0		6.8	48.9	44.2	0		
PHF	.703	.500	.793	.000	.750	.774	.899	.375	.000	.820	.250	.750	.667	.000	.958	.583	.839	.784	.000	.838	.834
Autos	118	22	178	0	318	253	249	5	0	507	2	9	8	0	19	42	297	272	0	611	1455
% Autos	97.5	100	96.7	0	97.2	97.3	96.1	83.3	0	96.6	66.7	75.0	100	0	82.6	100	98.3	99.6	0	99.0	97.5
Heavy Vehicles																					
% Heavy Vehicles	2.5	0	3.3	0	2.8	2.7	3.9	16.7	0	3.4	33.3	25.0	0	0	17.4	0	1.7	0.4	0	1.0	2.5

File Name: 4- NW 102nd Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

			102nc			NW 19th Street					NW 102nd Ave						NW 19th Street					
		Fr	om No	orth		From East					From South						From West					
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total	
Peak Hour A	nalysi	s Fron	า 07:00) to 08	:45 - Pe	eak 1 o	f 1															
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ins at 0	7:45																
07:45	23	3	35	0	61	67	58	1	0	126	3	2	1	0	6	6	58	53	0	117	310	
08:00	34	5	58	0	97	84	72	4	0	160	0	4	2	0	6	9	88	87	0	184	447	
08:15	43	11	55	0	109	63	69	0	0	132	0	2	3	0	5	9	90	78	0	177	423	
08:30	21	3	36	0	60	46	60	1	0	107	0	4	2	0	6	18	66	55	0	139	312	
Total Volume	121	22	184	0	327	260	259	6	0	525	3	12	8	0	23	42	302	273	0	617	1492	
% App. Total	37	6.7	56.3	0		49.5	49.3	1.1	0		13	52.2	34.8	0		6.8	48.9	44.2	0			
PHF	.703	.500	.793	.000	.750	.774	.899	.375	.000	.820	.250	.750	.667	.000	.958	.583	.839	.784	.000	.838	.834	
Autos	118	22	178	0	318	253	249	5	0	507	2	9	8	0	19	42	297	272	0	611	1455	
% Autos	97.5	100	96.7	0	97.2	97.3	96.1	83.3	0	96.6	66.7	75.0	100	0	82.6	100	98.3	99.6	0	99.0	97.5	
Heavy Vehicles																						
% Heavy Vehicles	2.5	0	3.3	0	2.8	2.7	3.9	16.7	0	3.4	33.3	25.0	0	0	17.4	0	1.7	0.4	0	1.0	2.5	

File Name: 4- NW 102nd Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

			102nd			NW 19th Street					NW 102nd Ave From South						NW 19th Street					
Start		FI	Om NO	orth		From East					FIOIII South						From West					
Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total	
Peak Hour Analysis From 16:00 to 17:45 - Peak 1 of 1																						
Peak Hour fo	or Enti	re Inte	rsectio	n Beg	ins at 10	6:45																
16:45	36	5	33	0	74	19	65	0	1	85	3	6	7	0	16	3	83	19	0	105	280	
17:00	50	6	49	0	105	30	78	2	0	110	3	5	26	0	34	2	108	18	0	128	377	
17:15	38	5	44	0	87	29	60	0	0	89	3	7	8	0	18	4	83	17	0	104	298	
17:30	48	5	55	0	108	31	77	0	0	108	4	4	12	0	20	7	101	13	0	121	357	
Total Volume	172	21	181	0	374	109	280	2	1	392	13	22	53	0	88	16	375	67	0	458	1312	
% App. Total	46	5.6	48.4	0		27.8	71.4	0.5	0.3		14.8	25	60.2	0		3.5	81.9	14.6	0			
PHF	.860	.875	.823	.000	.866	.879	.897	.250	.250	.891	.813	.786	.510	.000	.647	.571	.868	.882	.000	.895	.870	
Autos	168	18	177	0	363	90	278	2	1	371	13	21	52	0	86	16	366	61	0	443	1263	
% Autos	97.7	85.7	97.8	0	97.1	82.6	99.3	100	100	94.6	100	95.5	98.1	0	97.7	100	97.6	91.0	0	96.7	96.3	
Heavy Vehicles																						
% Heavy Vehicles	2.3	14.3	2.2	0	2.9	17.4	0.7	0	0	5.4	0	4.5	1.9	0	2.3	0	2.4	9.0	0	3.3	3.7	

File Name: 5- NW 97th Ave & NW 17th St

Site Code : 00000000 Start Date : 1/24/2024

Page No : 1

Groups Printed- Peds & Bikes

		ds & Bikes															
		NW 97					h Street			NW 97					h Street West		
		From	North		From East					From	South						
Start Time	Bikes			Peds	Bikes			Peds	Bikes			Peds	Bikes			Peds	Int. Total
07:00	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
07:15	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
07:30	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4
07:45	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1	3_
Total	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	1	10
*** BREAK ***																	
08:15	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
08:30	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
08:45	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2 2 6
Total	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	6
*** BREAK ***																	
16:00	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2 2
16:15	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
16:30	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
16:45	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	8
Total	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	8
*** BREAK ***																	
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
*** BREAK ***																	
17:45	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3
Total	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	1	3
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	25	0	0	2	27
Apprch %	0	0	0	0	0	0	0	0	0	0	0	0	92.6	0	0	7.4	
Total %	0	0	0	0	0	0	0	0	0	0	0	0	92.6	0	0	7.4	

File Name: 3- NW 19th St & Driveway

Site Code : 00000000 Start Date : 1/24/2024

Groups	Printed-	Autos	- Heavy	/ Vehicles
--------	----------	-------	---------	------------

	Residence In by Marriott NW 19th Street Residence In by Marriott NW 19th Street																				
	Re				riott						Re				riott						
			om N	orth				rom E	ast				om Sc	outh		From West					
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
07:00	0	0	0	0	0	1	68	0	0	69	2	0	0	0	2	0	73	1	0	74	145
07:15	0	0	0	0	0	0	58	0	0	58	2	0	0	0	2	1	108	0	0	109	169
07:30	0	0	0	0	0	0	76	0	0	76	10	0	0	0	10	0	93	2	0	95	181
07:45	0	0	0	0	0	0	82	0	0	82	2	0	0	0	2	2	126	0	0	128	212
Total	0	0	0	0	0	1	284	0	0	285	16	0	0	0	16	3	400	3	0	406	707
08:00	0	0	0	0	0	0	107	0	0	107	4	0	0	0	4	1	146	0	0	147	258
08:15	0	0	0	0	0	0	119	0	0	119	2	0	0	0	2	0	164	0	0	164	285
08:30	0	0	0	0	0	0	81	0	0	81	1	0	0	0	1	0	136	0	0	136	218
08:45	o	0	0	0	0	0	68	0	0	68	1	0	0	0	1	0	92	0	0	92	161
Total	0	0	0	0	0	0	375	0	0	375	8	0	0	0	8	1	538	0	0	539	922
			_		_			_				_	_			•			_		-
*** BREAK *	**																				
16:00	0	0	0	0	0	0	102	0	0	102	2	0	0	0	2	2	90	0	0	92	196
16:15	0	Ö	0	Ō	0	0	93	0	Ö	93	1	0	0	0	1	0	75	0	0	75	169
16:30	0	0	0	0	0	0	136	0	Ö	136	4	0	Ō	Ö	4	3	89	2	0	94	234
16:45	ő	Ö	Õ	Ö	Ö	ő	110	Õ	Ö	110	1	Õ	Ö	Ö	1	1	114	0	Õ	115	226
Total	0	0	0	0	0	0	441	0	0	441	8	0	0	0	 8	6	368	2	0	376	825
10141	, ,	Ū	Ü	Ŭ	Ŭ	, 0		Ū	Ū		, ,	Ū	Ŭ	Ŭ	Ŭ		000	_	Ü	0.0	020
17:00	0	0	0	0	0	0	151	0	0	151	6	0	0	0	6	2	132	0	0	134	291
17:15	0	0	0	Ö	0	0	101	0	Ö	101	2	0	0	Ö	2	2	95	Ö	0	97	200
17:30	ő	0	0	0	0	0	130	0	0	130	1	0	0	0	1	3	117	0	0	120	251
17:45	0	0	0	0	0	0	108	0	0	108	2	0	0	0	2	2	86	0	0	88	198
Total	0	0	0	0	0	0	490	0	0	490	11	0	0	0	11	9	430	0	0	439	940
Total	, 0	U	U	U	U	, 0	730	U	U	730		U	U	U		, 5	430	U	U	700	340
Grand Total	0	0	0	0	0	1	1590	0	0	1591	43	0	0	0	43	19	1736	5	0	1760	3394
Apprch %	0	0	0	0	U	0.1	99.9	0	0	1331	100	0	0	0	45	1.1	98.6	0.3	0	1700	3334
Total %	0	0	0	0	0	0.1	46.8	0	0	46.9	1.3	0	0	0	1.3	0.6	51.1	0.3	0	51.9	
Autos	0	0	0	0	0	1	1569		- 0	40.9	1.3	U			1.3	0.6	1717	0.1	U	51.9	
% Autos	0	0	0	0	0	100	98.7	0	0	98.7	100	0	0	0	100	100	98.9	100	0	98.9	98.8
	0	<u> </u>	U		0	100	30.7	U	U	90.7	100	U			100	100	30.3	100	U	90.9	90.0
Heavy Vehicles	0	0	0	0	0	0	1.3	0	0	1.3	0	0	0	0	0	_	1 1	0	0	1.1	1.2
% Heavy Vehicles	ı U	U	U	U	0	ı U	1.3	U	0	1.3	ı U	U	U	U	U	0	1.1	U	U	1.1	1.2

File Name: 3- NW 19th St & Driveway

Site Code : 00000000 Start Date : 1/24/2024

File Name: 3- NW 19th St & Driveway

Site Code : 00000000 Start Date : 1/24/2024

	Re			y Mar	riott			19th \$			Re			oy Mar	riott			19th S			
		<u>Fr</u>	om No	orth			F	<u>rom E</u>	ast			<u>Fr</u>	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	o7:00) to 17:	:45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ns at 0	7:45															
07:45	0	0	0	0	0	0	82	0	0	82	2	0	0	0	2	2	126	0	0	128	212
08:00	0	0	0	0	0	0	107	0	0	107	4	0	0	0	4	1	146	0	0	147	258
08:15	0	0	0	0	0	0	119	0	0	119	2	0	0	0	2	0	164	0	0	164	285
08:30	0	0	0	0	0	0	81	0	0	81	1	0	0	0	1	0	136	0	0	136	218
Total Volume	0	0	0	0	0	0	389	0	0	389	9	0	0	0	9	3	572	0	0	575	973
% App. Total	0	0	0	0		0	100	0	0		100	0	0	0		0.5	99.5	0	0		
PHF	.000	.000	.000	.000	.000	.000	.817	.000	.000	.817	.563	.000	.000	.000	.563	.375	.872	.000	.000	.877	.854
Autos	0	0	0	0	0	0	384	0	0	384	9	0	0	0	9	3	566	0	0	569	962
% Autos	0	0	0	0	0	0	98.7	0	0	98.7	100	0	0	0	100	100	99.0	0	0	99.0	98.9
Heavy Vehicles																					
% Heavy Vehicles	0	0	0	0	0	0	1.3	0	0	1.3	0	0	0	0	0	0	1.0	0	0	1.0	1.1

File Name: 3- NW 19th St & Driveway

Site Code : 00000000 Start Date : 1/24/2024

	Re			y Mar	riott			19th 5			Re			by Mar	riott			19th S			
		Fr	om No	orth			F	rom E	<u>ast</u>			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	o7:00) to 08:	:45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Enti	re Intei	rsectio	n Begi	ns at 0	7:45															
07:45	0	0	0	0	0	0	82	0	0	82	2	0	0	0	2	2	126	0	0	128	212
08:00	0	0	0	0	0	0	107	0	0	107	4	0	0	0	4	1	146	0	0	147	258
08:15	0	0	0	0	0	0	119	0	0	119	2	0	0	0	2	0	164	0	0	164	285
08:30	0	0	0	0	0	0	81	0	0	81	1	0	0	0	1	0	136	0	0	136	218
Total Volume	0	0	0	0	0	0	389	0	0	389	9	0	0	0	9	3	572	0	0	575	973
% App. Total	0	0	0	0		0	100	0	0		100	0	0	0		0.5	99.5	0	0		
PHF	.000	.000	.000	.000	.000	.000	.817	.000	.000	.817	.563	.000	.000	.000	.563	.375	.872	.000	.000	.877	.854
Autos	0	0	0	0	0	0	384	0	0	384	9	0	0	0	9	3	566	0	0	569	962
% Autos	0	0	0	0	0	0	98.7	0	0	98.7	100	0	0	0	100	100	99.0	0	0	99.0	98.9
Heavy Vehicles																					
% Heavy Vehicles	0	0	0	0	0	0	1.3	0	0	1.3	0	0	0	0	0	0	1.0	0	0	1.0	1.1

File Name: 3- NW 19th St & Driveway

Site Code : 00000000 Start Date : 1/24/2024

	Re			y Mar	riott			19th S			Re			by Mar	riott			19th S			
			om No	ortn				rom E	ast				om So	outn				om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	16:00) to 17:	45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ns at 10	6:45															
16:45	0	0	0	0	0	0	110	0	0	110	1	0	0	0	1	1	114	0	0	115	226
17:00	0	0	0	0	0	0	151	0	0	151	6	0	0	0	6	2	132	0	0	134	291
17:15	0	0	0	0	0	0	101	0	0	101	2	0	0	0	2	2	95	0	0	97	200
17:30	0	0	0	0	0	0	130	0	0	130	1	0	0	0	1	3	117	0	0	120	251
Total Volume	0	0	0	0	0	0	492	0	0	492	10	0	0	0	10	8	458	0	0	466	968
% App. Total	0	0	0	0		0	100	0	0		100	0	0	0		1.7	98.3	0	0		
PHF	.000	.000	.000	.000	.000	.000	.815	.000	.000	.815	.417	.000	.000	.000	.417	.667	.867	.000	.000	.869	.832
Autos	0	0	0	0	0	0	489	0	0	489	10	0	0	0	10	8	455	0	0	463	962
% Autos	0	0	0	0	0	0	99.4	0	0	99.4	100	0	0	0	100	100	99.3	0	0	99.4	99.4
Heavy Vehicles																					
% Heavy Vehicles	0	0	0	0	0	0	0.6	0	0	0.6	0	0	0	0	0	0	0.7	0	0	0.6	0.6

File Name: 2- NW 19th St & Full Open Driveway

Site Code : 00000000 Start Date : 1/24/2024

Groups	Printed-	Autos	- Heavy	/ Vehicles
--------	----------	-------	---------	------------

									roups	Plinte	a- Auto	<u>s - ne</u>	avy v	enicies	<u>s</u>							
				Drivew	ay			NW	19th S	Street			ouble	Tree	by Hilt	on		NW	19th \$	Street		
			Fı	om N	orth			F	rom E	ast_				om So				Fr	rom W	est		
Start	Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
(07:00	1	0	0	0	1	0	63	6	0	69	6	0	4	0	10	3	64	0	0	67	147
(07:15	0	0	0	0	0	3	52	5	0	60	10	1	3	0	14	2	104	1	0	107	181
(07:30	0	0	0	0	0	0	88	3	0	91	8	0	4	0	12	2	88	2	0	92	195
(07:45	0	0	0	0	0	1	72	12	1	86	10	1	6	0	17	2	111	3	1	117	220
	Total	1	0	0	0	1	4	275	26	1	306	34	2	17	0	53	9	367	6	1	383	743
(08:00	0	0	0	0	0	1	101	6	0	108	14	0	3	0	17	2	174	8	1	185	310
(08:15	1	0	1	0	2	2	109	13	1	125	25	2	5	0	32	3	157	12	0	172	331
	08:30	0	0	2	0	2	2	73	11	0	86	14	0	2	0	16	4	108	2	1	115	219
	08:45	Ō	1	1	Ö	2	4	67	5	Ö	76	7	Ō	3	Ö	10	5	87	3	0	95	183
	Total	1	1	4	0	6	9	350	35	1	395	60	2	13	0	75	14	526	25	2	567	1043
					_												•		_			
*** BR	EAK *	**																				
1	16:00	1	0	1	0	2	0	77	26	0	103	5	0	2	0	7	5	86	0	0	91	203
	16:15	0	1	0	0	1	1	81	23	0	105	9	1	3	0	13	3	65	0	0	68	187
	16:30	0	0	0	0	0	0	108	24	1	133	12	0	4	0	16	6	82	0	0	88	237
1	16:45	1	1	0	0	2	1	83	25	0	109	22	0	4	0	26	4	88	0	0	92	229
	Total	2	2	1	0	5	2	349	98	1	450	48	1	13	0	62	18	321	0	0	339	856
					_											_	_		_	_		
1	17:00	1	2	0	0	3	1	120	35	1	157	13	0	3	0	16	4	120	0	1	125	301
	17:15	2	0	0	0	2	0	75	35	1	111	10	0	8	0	18	6	87	1	0	94	225
	17:30	8	0	5	Ö	13	2	96	30	1	129	22	0	3	Ō	25	16	95	0	0	111	278
	17:45	3	1	0	0	4	0	90	21	0	111	11	0	8	0	19	5	74	0	0	79	213
	Total	14	3	5	0	22	3	381	121	3	508	56	0	22	0	78	31	376	1	1	409	1017
			_	_	•					_					-							
Grand	d Total	18	6	10	0	34	18	1355	280	6	1659	198	5	65	0	268	72	1590	32	4	1698	3659
	ch %	52.9	17.6	29.4	0		1.1	81.7	16.9	0.4		73.9	1.9	24.3	0		4.2	93.6	1.9	0.2		
	otal %	0.5	0.2	0.3	0	0.9	0.5	37	7.7	0.2	45.3	5.4	0.1	1.8	0	7.3	2	43.5	0.9	0.1	46.4	
	Autos	18	5	10	0	33	18	1336		- ·-		<u> </u>	<u> </u>				_	1564	- 0.0			
	Autos	100	83.3	100	0	97.1	100	98.6	99.6	100	98.8	99	100	98.5	0	98.9	100	98.4	100	100	98.5	98.6
	Vehicles						1.23											,				
% Heavy		l n	16.7	0	0	2.9	0	1.4	0.4	0	1.2	1	0	1.5	0	1.1	0	1.6	0	0	1.5	1.4

File Name: 2- NW 19th St & Full Open Driveway

Site Code : 00000000 Start Date : 1/24/2024

File Name: 2- NW 19th St & Full Open Driveway

Site Code : 00000000 Start Date : 1/24/2024

		С	rivew	ay			NW	19th S	Street		С	ouble	Tree	by Hilt	on		NW	19th S	Street		
		Fr	om No	orth			F	rom E	ast			Fr	om Sc	outh			Fr	rom W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	07:00) to 17:	:45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Entir	re Intei	rsectio	n Begi	ns at 0	7:45															
07:45	0	0	0	0	0	1	72	12	1	86	10	1	6	0	17	2	111	3	1	117	220
08:00	0	0	0	0	0	1	101	6	0	108	14	0	3	0	17	2	174	8	1	185	310
08:15	1	0	1	0	2	2	109	13	1	125	25	2	5	0	32	3	157	12	0	172	331
08:30	0	0	2	0	2	2	73	11	0	86	14	0	2	0	16	4	108	2	1_	115	219
Total Volume	1	0	3	0	4	6	355	42	2	405	63	3	16	0	82	11	550	25	3	589	1080
% App. Total	25	0	75	0		1.5	87.7	10.4	0.5		76.8	3.7	19.5	0		1.9	93.4	4.2	0.5		
PHF	.250	.000	.375	.000	.500	.750	.814	.808	.500	.810	.630	.375	.667	.000	.641	.688	.790	.521	.750	.796	.816
Autos	1	0	3	0	4	6	350	42	2	400	63	3	16	0	82	11	544	25	3	583	1069
% Autos	100	0	100	0	100	100	98.6	100	100	98.8	100	100	100	0	100	100	98.9	100	100	99.0	99.0
Heavy Vehicles																					
% Heavy Vehicles	0	0	0	0	0	0	1.4	0	0	1.2	0	0	0	0	0	0	1.1	0	0	1.0	1.0

File Name: 2- NW 19th St & Full Open Driveway

Site Code : 00000000 Start Date : 1/24/2024

			rivew					19th S						by Hilt	on			19th S			
		Fr	om No	orth			F	rom E	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	07:00	to 08:	:45 - Pe	ak 1 o	of 1														
Peak Hour fo	or Enti	re Intei	rsectio	n Begi	ns at 0	7:45															
07:45	0	0	0	0	0	1	72	12	1	86	10	1	6	0	17	2	111	3	1	117	220
08:00	0	0	0	0	0	1	101	6	0	108	14	0	3	0	17	2	174	8	1	185	310
08:15	1	0	1	0	2	2	109	13	1	125	25	2	5	0	32	3	157	12	0	172	331
08:30	0	0	2	0	2	2	73	11	0	86	14	0	2	0	16	4	108	2	1	115	219
Total Volume	1	0	3	0	4	6	355	42	2	405	63	3	16	0	82	11	550	25	3	589	1080
% App. Total	25	0	75	0		1.5	87.7	10.4	0.5		76.8	3.7	19.5	0		1.9	93.4	4.2	0.5		
PHF	.250	.000	.375	.000	.500	.750	.814	.808	.500	.810	.630	.375	.667	.000	.641	.688	.790	.521	.750	.796	.816
Autos	1	0	3	0	4	6	350	42	2	400	63	3	16	0	82	11	544	25	3	583	1069
% Autos	100	0	100	0	100	100	98.6	100	100	98.8	100	100	100	0	100	100	98.9	100	100	99.0	99.0
Heavy Vehicles																					
% Heavy Vehicles	0	0	0	0	0	0	1.4	0	0	1.2	0	0	0	0	0	0	1.1	0	0	1.0	1.0

File Name: 2- NW 19th St & Full Open Driveway

Site Code : 00000000 Start Date : 1/24/2024

			Privew	,				19th \$			С			by Hilt	on			19th S			
		Fr	om No	orth			F	<u>rom E</u>	<u>ast</u>			Fr	om So	outh			<u>Fr</u>	om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	16:00) to 17:	:45 - Pe	ak 1 c	of 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ns at 16	3:45															
16:45	1	1	0	0	2	1	83	25	0	109	22	0	4	0	26	4	88	0	0	92	229
17:00	1	2	0	0	3	1	120	35	1	157	13	0	3	0	16	4	120	0	1	125	301
17:15	2	0	0	0	2	0	75	35	1	111	10	0	8	0	18	6	87	1	0	94	225
17:30	8	0	5	0	13	2	96	30	1_	129	22	0	3	0	25	16	95	0	0	111	278
Total Volume	12	3	5	0	20	4	374	125	3	506	67	0	18	0	85	30	390	1	1	422	1033
% App. Total	60	15	25	0		0.8	73.9	24.7	0.6		78.8	0	21.2	0		7.1	92.4	0.2	0.2		
PHF	.375	.375	.250	.000	.385	.500	.779	.893	.750	.806	.761	.000	.563	.000	.817	.469	.813	.250	.250	.844	.858
Autos	12	2	5	0	19	4	373	124	3	504	67	0	18	0	85	30	383	1	1	415	1023
% Autos	100	66.7	100	0	95.0	100	99.7	99.2	100	99.6	100	0	100	0	100	100	98.2	100	100	98.3	99.0
Heavy Vehicles																					
% Heavy Vehicles	0	33.3	0	0	5.0	0	0.3	8.0	0	0.4	0	0	0	0	0	0	1.8	0	0	1.7	1.0

File Name: 1- NW 107th Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

Page No : 1

							G	roups	Printe	d- Auto	s - He	avy V	ehicles	3							
		NW	107th	Ave			NW	19th \$	Street			NW	107th	Ave			NW	19th 5	Street		
		Fr	om No	orth			F	rom E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
07:00	0	140	41	0	181	39	0	22	0	61	45	389	0	2	436	0	0	0	0	0	678
07:15	0	166	46	2	214	50	0	17	0	67	87	427	0	0	514	0	0	0	0	0	795
07:30	0	175	49	2	226	37	0	27	0	64	61	444	0	1	506	0	0	0	0	0	796
07:45	0	171	45	4	220	38	0	32	0	70	83	466	0	1	550	0	0	0	0	0	840
Total	0	652	181	8	841	164	0	98	0	262	276	1726	0	4	2006	0	0	0	0	0	3109
08:00	0	221	72	7	300	65	0	55	0	120	138	375	0	0	513	0	0	0	0	0	933
08:15	0	197	62	4	263	34	0	49	0	83	138	415	0	0	553	0	0	0	0	0	899
08:30	0	180	55	0	235	44	0	54	1	99	91	416	0	1	508	0	0	0	0	0	842
08:45	0	207	43	4	254	35	0	26	0	61	65	377	0	0	442	0	0	0	0	0	757
Total	0	805	232	15	1052	178	0	184	1	363	432	1583	0	1	2016	0	0	0	0	0	3431
*** BREAK *	**																				
16:00	0	336	40	2	378	50	0	99	0	149	41	242	0	2	285	0	0	0	0	0	812
16:15	0	335	46	2	383	26	0	61	0	87	23	173	0	1	197	0	0	0	0	0	667
16:30	0	320	44	2	366	40	0	80	0	120	32	241	0	2	275	0	0	0	0	0	761
16:45	0	294	49	0	343	38	0	69	0	107	35	223	0	1_	259	0	0	0	0	0	709
Total	0	1285	179	6	1470	154	0	309	0	463	131	879	0	6	1016	0	0	0	0	0	2949
17:00	0	316	66	2	384	61	0	101	1	163	40	228	0	0	268	0	0	0	0	0	815
17:15	0	328	64	2	394	43	0	53	0	96	36	239	2	0	277	0	0	0	0	0	767
17:30	0	284	62	3	349	33	0	59	4	96	32	245	0	0	277	0	0	0	0	0	722
17:45	0	279	51	2	332	45	0	96	1_	142	21	192	0	1_	214	0	0	0	0	0	688
Total	0	1207	243	9	1459	182	0	309	6	497	129	904	2	1	1036	0	0	0	0	0	2992
	ı					ı										ı					
Grand Total	0	3949	835	38	4822	678	0	900	7	1585	968	5092	2	12	6074	0	0	0	0	0	12481
Apprch %	0	81.9	17.3	8.0	00.0	42.8	0	56.8	0.4	40.7	15.9	83.8	0	0.2	40.7	0	0	0	0		

Total %

% Autos

Heavy Vehicles

% Heavy Vehicles

Autos

0 31.6

0 3888

1.5 1.1

0

6.7

98.5 98.9

0.3

100

38.6

98.5

5.4

98.2

1.5 | 1.8

7.2

0 98.3

0 1.7

0.1

0

12.7

7.8 40.8

98.5

1.5

5032

98.8

1.2

0 0.1

100

100

48.7

98.8

1.2

0

0

0

0

0

0

0

0

0

0

0

12309

98.6

1.4

File Name: 1- NW 107th Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

File Name: 1- NW 107th Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

			107th					19th \$					107th					19th \$			
		Fr	om No	orth			F	rom E	<u>ast</u>			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	า 07:00) to 17	:45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ins at 0	7:45															
07:45	0	171	45	4	220	38	0	32	0	70	83	466	0	1	550	0	0	0	0	0	840
08:00	0	221	72	7	300	65	0	55	0	120	138	375	0	0	513	0	0	0	0	0	933
08:15	0	197	62	4	263	34	0	49	0	83	138	415	0	0	553	0	0	0	0	0	899
08:30	0	180	55	0	235	44	0	54	1_	99	91	416	0	1_	508	0	0	0	0	0	842
Total Volume	0	769	234	15	1018	181	0	190	1	372	450	1672	0	2	2124	0	0	0	0	0	3514
% App. Total	0	75.5	23	1.5		48.7	0	51.1	0.3		21.2	78.7	0	0.1		0	0	0	0		
PHF	.000	.870	.813	.536	.848	.696	.000	.864	.250	.775	.815	.897	.000	.500	.960	.000	.000	.000	.000	.000	.942
Autos	0	745	232	15	992	178	0	183	1	362	448	1655									
% Autos	0	96.9	99.1	100	97.4	98.3	0	96.3	100	97.3	99.6	99.0	0	100	99.1	0	0	0	0	0	98.4
Heavy Vehicles																					
% Heavy Vehicles	0	3.1	0.9	0	2.6	1.7	0	3.7	0	2.7	0.4	1.0	0	0	0.9	0	0	0	0	0	1.6

File Name: 1- NW 107th Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

			107th					19th S	Street ast				107th					19th S			
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	n 07:00) to 08	:45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ins at 0	7:45															
07:45	0	171	45	4	220	38	0	32	0	70	83	466	0	1	550	0	0	0	0	0	840
08:00	0	221	72	7	300	65	0	55	0	120	138	375	0	0	513	0	0	0	0	0	933
08:15	0	197	62	4	263	34	0	49	0	83	138	415	0	0	553	0	0	0	0	0	899
08:30	0	180	55	0	235	44	0	54	1_	99	91	416	0	1_	508	0	0	0	0	0	842
Total Volume	0	769	234	15	1018	181	0	190	1	372	450	1672	0	2	2124	0	0	0	0	0	3514
% App. Total	0	75.5	23	1.5		48.7	0	51.1	0.3		21.2	78.7	0	0.1		0	0	0	0		
PHF	.000	.870	.813	.536	.848	.696	.000	.864	.250	.775	.815	.897	.000	.500	.960	.000	.000	.000	.000	.000	.942
Autos	0	745	232	15	992	178	0	183	1	362	448	1655									
% Autos	0	96.9	99.1	100	97.4	98.3	0	96.3	100	97.3	99.6	99.0	0	100	99.1	0	0	0	0	0	98.4
Heavy Vehicles																					
% Heavy Vehicles	0	3.1	0.9	0	2.6	1.7	0	3.7	0	2.7	0.4	1.0	0	0	0.9	0	0	0	0	0	1.6

File Name: 1- NW 107th Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

			107th					19th S					107th om Sc					19th S			
Start Time	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Right	Thru	Left	U-Turns	App. Total	Int. Total
Peak Hour A	nalysi	s From	n 16:00) to 17	:45 - Pe	ak 1 o	f 1														
Peak Hour fo	or Enti	re Inte	rsectio	n Begi	ins at 10	6:30															
16:30	0	320	44	2	366	40	0	80	0	120	32	241	0	2	275	0	0	0	0	0	761
16:45	0	294	49	0	343	38	0	69	0	107	35	223	0	1	259	0	0	0	0	0	709
17:00	0	316	66	2	384	61	0	101	1	163	40	228	0	0	268	0	0	0	0	0	815
17:15	0	328	64	2	394	43	0	53	0	96	36	239	2	0	277	0	0	0	0	0	767
Total Volume	0	1258	223	6	1487	182	0	303	1	486	143	931	2	3	1079	0	0	0	0	0	3052
% App. Total	0	84.6	15	0.4		37.4	0	62.3	0.2		13.3	86.3	0.2	0.3		0	0	0	0		
PHF	.000	.959	.845	.750	.944	.746	.000	.750	.250	.745	.894	.966	.250	.375	.974	.000	.000	.000	.000	.000	.936
Autos	0	1246																			
% Autos	0	99.0	99.1	100	99.1	98.9	0	99.7	100	99.4	95.8	98.3	100	100	98.0	0	0	0	0	0	98.7
Heavy Vehicles																					
% Heavy Vehicles	0	1.0	0.9	0	0.9	1.1	0	0.3	0	0.6	4.2	1.7	0	0	2.0	0	0	0	0	0	1.3

File Name: 2- NW 19th St & Full Open Driveway

Site Code : 00000000 Start Date : 1/24/2024

Page No : 1

Groups Printed- Peds & Bikes

Start Time Bikes Peds Peds Bikes Peds Peds Bikes Peds Bikes Peds Peds Bikes Peds Peds Bikes Peds P								loups i										1
Start Time Bikes Peds Peds Bikes Peds Peds Bikes Peds Bikes Peds Peds Bikes Peds Bikes Peds Peds Bikes Peds Peds Bikes Peds Bikes Peds Peds Bikes Peds Peds Bikes Peds Peds Peds Bikes Peds Pe									Do			lton		NW 19t	h Street			
Start Time Bikes Peds Bikes Peds Bikes Peds Bikes Peds Bikes Peds Int. Total			From	North			From	East			From	South			From	West		
07:15	Start Time	Bikes			Peds	Bikes			Peds	Bikes			Peds	Bikes			Peds	Int. Total
07:15		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:15	0	0	0	0	0		0	1	0	0	0	0	0	0	0	0	1
Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** BREAK ***	-	-		- '			_				_		-	_		_	'
08:15		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	2
08:15																		
08:30	08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
*** BREAK *** Total 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 4 *** BREAK *** 16:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	08:15	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2
Total 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 4 **** BREAK **** 16:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0	08:30	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
Total 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 4 **** BREAK **** 16:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0	*** BREAK ***																	
16:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0	0	1	0	0	0	0	0	0	2	0	0	0	1	4
*** BREAK *** Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 17:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** BREAK ***																	
*** BREAK *** Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 17:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
17:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** BREAK ***																	
17:15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 *** BREAK ***	Total	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
17:15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 *** BREAK ***	17:00	0	0	0	0	۱ ،	0	0	0	0	0	0	2	0	0	0	0	2
*** BREAK ***						o o	0	0	0									1
		Ü	Ū	Ū	0	, ,	Ū	Ü	Ü	, ,	Ū	Ū		, ,	Ū	Ū	Ü	
Total 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5		0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2
	Total	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5
Grand Total 0 0 0 0 1 0 0 1 0 0 0 8 0 0 0 2 12	Grand Total	0	0	0	0	1	0	0	1	0	0	0	8	0	0	O	2	12
Apprch % 0 0 0 0 50 0 0 50 0 0 100 0 0 100		-	-							1				_				
Total % 0 0 0 0 8.3 0 0 8.3 0 0 0 66.7 0 0 0 16.7		_	-	-							-	-		_	_	_		

File Name: 1- NW 107th Ave & NW 19th St

Site Code : 00000000 Start Date : 1/24/2024

Page No : 1

Groups Printed- Peds & Bikes

							oups P		eas &								1
			7th Ave			NW 19th					7th Ave			NW 19t		İ	
		From	North			From	East			From	South			From	West		
Start Time	Bikes			Peds	Bikes			Peds	Bikes			Peds	Bikes			Peds	Int. Total
*** BREAK ***							•						•			•	
07:30	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
07:45	0	0	0	0	1	0	0	<u> </u>	0	0	0	0	0	0	0	0	11_
Total	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2
*** BREAK ***																	
08:15	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK ***																	
08:45	0	0	0	0	0	0_	0	0	0	0	0	1_	0	0	0	0	11_
Total	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	2
*** BREAK ***																	
,													ı				1
16:00	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	3
*** BREAK ***													i				ı
16:45	0	0	0	0	1	0	0	1_	0	0	0	0	0	0	0	0	5
Total	1	0	0	0	3	0	0	1	0	0	0	0	0	0	0	0	5
		_	_	_ 1		_	_	_		_	_	_		_	_	_	
17:00	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	2
*** BREAK ***		_	_			_	_	_		_	_	_		_	_	_	
17:30	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2
17:45	0	0	0	0	0	0	0	1_	0	0	0	0	0	0	0	0	11
Total	1	0	0	1	2	0	0	1	0	0	0	0	0	0	0	0	5
0 17 (1			•			•	•	•						•	•		
Grand Total	2	0	0	1	7	0	0	3	0	0	0	1	0	0	0	0	14
Apprch %	66.7	0	0	33.3	70	0	0	30	0	0	0	100	0	0	0	0	
Total %	14.3	0	0	7.1	50	0	0	21.4	0	0	0	7.1	0	0	0	0	

File Name: 3- NW 19th St & Driveway

Site Code : 00000000 Start Date : 1/24/2024

Page No : 1

Groups Printed- Peds & Bikes

							Capo .	micoa i	040 4	D11100							
	Resi	Residence In by Marriott From North				NW 19th Street				Residence In by Marriott				NW 19th Street			
		From	North			From	East			From	South		From West				
Start Time	Bikes			Peds	Bikes			Peds	Bikes			Peds	Bikes			Peds	Int. Total
*** BREAK ***																	
Grand Total Apprch %	0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0
Total %																	

SIGNAL OPERATING PLAN

		SIGNAL HEAD NUMBER										, , , , , , , , , , , , , , , , , , ,	
PHASE	INT	2			6				•				
hour	R/W	Gr	R	%	R								
Φ2+5	PED. CL							wearen annough	en e		and the same of th		
SBL		G	R	% <u>~</u>	R.		_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
NW (O) AV	٤												2 .5
		-										*	term.
	CLEAR							wenteres)	encontribution	ATTENNEY HOUSE			
(ACTUATED)	[5]								Lamandan (terres sant transposition y		
	R/W	G	R	G	G						***************************************		944 kasikusususuddiniya uusuunuguusuurga Karulakka keekkee 30 kalilakka kababaa kababaa kababaa kababaa kababa
Ф2+6	PED. CL.		, ,			\dashv				***************************************			
N/S	14		R	1	7			OLD REAL PROPERTY.	androne organized		dududisco _{ning}		G
NW LOTAV	٤				`								
	α												2
	CLEAR												
(BECALL)			and the state of t									Quidoli (Charrasson graphic gr	and in second and successment an arrangement of the property o
Ф4	R/W	L R	G	2	R.								·
† ′	PED.CL.		- -										Æ.
. WB	2+5	R	1	R.		_	_	_			ne principality (. 1
. NW 195t	2+6	R	1	R	R	\dashv	\dashv	_		·			Lafra Lamana
	CLEAR			\vdash	_	+	_	\dashv					View
(ACTUSTED)				\vdash			-	\dashv					
	R/W		-		7								
,	PED. CL						\forall				•		IN .
•	2											·	
	œ					Ī						•	7
·	CLEAR						_				annan a		
with a second			J					_					
FLASH, OPER.	<u>> </u>	Fr	FR	FY	HR.		إ				energene energene		
Drown	Date 8/21/				DE	N Par	IIAN TME	/II-D	ADE OF	CO	UNT LIC	Y WORKS	,
H. HERNANSEZ	8/31/48		and the second s		wo my inning	- Charleston (N	- CONTRACTOR OF THE CONTRACTOR	- The State of the S		340			10. 589Z
Ob 1:	I 5-4-						1		a	•			
F. PRATS	5/6/99	Nu) (Γ^{\prime}	A	V	2		9	C	- +		
Division Engineer	Date						1	1	•				
			Placed in Service										Phasing Number
		Placed in Service Date: 4/12/99 By:											

TOD Schedule Report

Print Date: 10/4/2021

for 5892: NW 107 Av&NW 19 St

Print Time: 8:48 PM

Asset		Intersection	<u>1</u>	į	TOD Schedule	Op Mode	<u>Plan #</u>	<u>Cycle</u>	<u>Offset</u>	TOD Setting	<u>Active</u> <u>PhaseBank</u>	Active Maximum
5892	NW	107 Av&NW	/ 19 St	D	OW-2	TOD	[12] HEAVY PM PEAK	140	69	N/A	1	Max 2
			<u> </u>	Splits_								
<u>PH 1</u>	<u>PH 2</u>	<u>PH 3</u>	<u>PH 4</u>	<u>PH 5</u>	<u>PH 6</u>	<u>PH 7</u>	<u>PH 8</u>					
-	SBT	-	WBT	SBL	NBT	-	-					
0	107	0	20	6	94	0	0					
	1		←	L	lack							

<u>Walk</u> hase Bank	Don't Walk	Min Initial	Veh Ext	May Limit			
hase Bank			TOIL EXC	<u>Max Limit</u>	<u>Max 2</u>	<u>Yellow</u>	<u>Red</u>
1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3		
0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
0 - 0 - 0	0 - 0 - 0	16 - 16 - 40	2.5 -2.5 - 2.5	40 - 45 - 40	0 - 0 - 0	4.4	2.4
0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
0 - 0 - 0	0 - 0 - 0	7 - 7 - 7	3 -2.5 - 2.5	8 - 8 - 15	32 - 0 - 32	4	2.1
0 - 0 - 0	0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	7 - 5 - 7	18 - 0 - 9	4.4	2.4
0 - 0 - 0	0 - 0 - 0	16 - 16 - 40	2.5 - 2.5 - 2.5	40 - 45 - 40	0 - 0 - 0	4.4	2.4
0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
) - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
)	- 0 - 0 - 0 - 0	- 0 - 0 0 - 0 - 0 - 0 - 0 0 - 0 - 0	- 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 -	- 0 - 0	- 0 - 0	- 0 - 0	- 0 - 0

 Permitted Phases

 12345678

 Default
 -2-456-

 External Permit 0

 External Permit 1

 External Permit 2

unknown

Last In Service Date:

					Green T	ime					
Current		1	2	3	4	5	6	7	8		
TOD Schedule Plan	<u>Cycle</u>	-	SBT	-	WBT	SBL	NBT	-	-	Ring Offset	<u>Offset</u>
2	140	0	111	0	16	12	92	0	0	0	90
3	170	0	139	0	18	15	117	0	0	0	87
4	160	0	130	0	17	18	105	0	0	0	90
5	130	0	97	0	20	12	78	0	0	0	92
7	150	0	115	0	22	13	95	0	0	0	78
8	160	0	118	0	29	10	101	0	0	0	17
9	160	0	118	0	29	10	101	0	0	0	5
10	130	0	99	0	18	6	86	0	0	0	91
11	170	0	127	0	30	12	108	0	0	0	1
12	140	0	107	0	20	6	94	0	0	0	69
14	120	0	93	0	14	8	78	0	0	0	74
20	115	0	88	0	14	8	73	0	0	0	25
21	150	0	118	0	19	10	101	0	0	0	60
22	115	0	88	0	14	8	73	0	0	0	111
24	110	0	82	0	15	7	68	0	0	0	61
25	150	0	112	0	25	12	93	0	0	0	85
26	160	0	129	0	18	9	113	0	0	0	55
27	110	0	82	0	15	7	68	0	0	0	61

Local TOD S	chedule	
<u>Time</u>	<u>Plan</u>	<u>DOW</u>
0000	Free	M T W Th F
0000	Free	
0000	Free	
0000	Free	Su S
0030	Flash	M T W Th F
0130	Flash	
0530	Free	
0545	2	MTWThF
0545	4	
0630	3	M T W Th F
0700	24	Su S
0800	Free	
0900	20	
1000	7	M T W Th F
1000	25	Su S
1000	5	
1030	21	
1130	8	M T W Th F
1430	9	
1530	11	M T W Th F
1600	26	Su S
2000	10	
2000	12	MTWThF
2100	27	Su S
2300	Free	
2300	Free	M T W Th F
2300	22	

TOD Schedule Report or 5892: NW 107 Av&NW 19 St

Print Date: 10/4/2021

for 5892: NW 107 Av&NW 19 St Print Time: 8:48 PM

Curre	nt Time of Day Function			Local	Time of Day Function		
Time	<u>Function</u>	Settings *	Day of Week	<u>Time</u>	<u>Function</u>	Settings *	Day of Week
0000	TOD OUTPUTS		SuM T W ThF S	0000	TOD OUTPUTS		SuM T W ThF S

* Settings

Blank - FREE - Phase Bank 1, Max 1 Blank - Plan - Phase Bank 1, Max 2

- 1 Phase Bank 2, Max 1
- 2 Phase Bank 2, Max 2
- 3 Phase Bank 3, Max 1
- 4 Phase Bank 3, Max 2
- 5 EXTERNAL PERMIT 1
- 6 EXTERNAL PERMIT 2
- 7 X-PED OMIT
- 8 TBA

No Calendar Defined/Enabled												

	SIGNAL OPERATING PLAN Direction NB SB EB Ped Heads N												
*	D	irection	1	IB	SB	Ē	В	Ped	Heads	IJ N			
Timing Phases	Н	ead No.	1/6	6	2.	8	8R			Movements/Display/Actuation			
(1 + 6)		Dwell	G/ <g< td=""><td>G</td><td>R</td><td>R</td><td>R/G></td><td></td><td></td><td></td></g<>	G	R	R	R/G>						
	Ç	(2 + 6)	G/ <y< td=""><td>G</td><td>R</td><td>R</td><td>R/Y></td><td></td><td></td><td>1/6 6</td></y<>	G	R	R	R/Y>			1/6 6			
NW 97 AV	í e												
NB	a r												
	, .									8R •			
(Actuated)	٥	<u> </u>								Y.			
(2 + 6)	L	Dwell	G	G	G	R	R		 				
	С	(8)	Υ	Υ	Υ	R	R			4			
NW 97 AV	l e	(1+6)	G	G	Υ	R	R ··	-	 	2 ₩			
N/S	a r	ļ	 							1/6€, 6♠			
<u> </u>	į		ļ						 				
(Decell)	ò								╁╌┼╌	-			
(Recall)	<u> </u>	Dwell	· .		R	G	G		 -				
(8)	_		R	R		Y	· Y	 	 	8			
NW 17 ST	C	(1 + 6)	R	R R	R R	R	R	- -		-			
EB	е	(2 + 6)	н	н	Α	n	n		 -				
	a r								 	1			
	t		-							V 8			
(Actuated)	0								 -	,			
(riolaaloa)		Dwell		*********									
										1			
	0												
	e a												
	r									1			
	t												
	0												
		Dwell		• • • •									
	С	,											
	'												
	e a												
	ľ												
	t o												
		Dwell											
	С												
	l e	,											
	а								 	4			
	1												
	t 0							- 	 	-			
							FR						
Flashing Operation FY FY					FY	FR	Page 1 of 1						
Miami-Dad					County P	ublic	nt						
Drawn by Date:				0044	NIM 97 A				7 AVENUE & NW 17 STRET				
Diana I. Ospina 3/22/20 Checked by: Date:			2U11	Placed in Serv		~e	Phae	ina No	Asset Number				
Checked by: H. HEぽんるいの	(_	3/2 ⁴	I/u	Date 06/0			Phasing No. Asset Number 1 6865					
11.112	_			1		~ , ~	- • 1	Calcus In 20 and 10 and		4			

TOD Schedule Report

Print Date: for 6865: NW 97 Av&NW 17 St 10/4/2021

Asset		Intersection	<u>ı</u>	\$	TOD Schedule	Op Mode	<u>Plan #</u>	Cyc	<u>le</u> <u>Offset</u>	TOD Setting	Active Active PhaseBank Maximum
6865	NW	97 Av&NW	17 St	D	OW-2	TOD	Free	0	0	N/A	1 Max 1
			<u> </u>	<u>Splits</u>							
<u>PH 1</u>	<u>PH 2</u>	<u>PH 3</u>	<u>PH 4</u>	<u>PH 5</u>	<u>PH 6</u>	<u>PH 7</u>	<u>PH 8</u>				
NBL	SBT	-	-	-	NBT	-	EBT				
0	0	0	0	0	0	0	0				
4							~				
	lacksquare				T						
	•										

<u>Phase</u>	<u>Walk</u>	Don't Walk	Min Initial	<u>Veh Ext</u>	Max Limit	Max 2	<u>Yellow</u>	<u>Red</u>
	Phase Bank							
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3		
1 NBL	0 - 0 - 0	0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	15 - 5 - 5	10 - 10 - 10	4.4	2
2 SBT	0 - 0 - 0	0 - 0 - 0	16 - 16 - 16	1 - 1 - 1	60 - 40 - 40	0 - 40 - 40	4.4	2
3 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
4 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
5 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
6 NBT	0 - 0 - 0	0 - 0 - 0	16 - 16 - 16	1 - 1 - 1	60 - 40 - 40	0 - 40 - 40	4.4	2
7 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
8 EBT	0 - 0 - 0	0 - 0 - 0	7 - 7 - 7	2.5 -2.5 - 2.5	15 - 15 - 15	40 - 40 - 40	4	2

Current TOD Schedule	<u>Plan</u>	<u>Cycle</u>	1 NBL	2 SBT	3	4	5	6 NBT	7	8 EBT	Ring Offset	Offset

Last In Service Date:	unknown
Permitted Phases	
	<u>12345678</u>
Default	126-8
External Permit 0	
External Permit 1	-26-8
External Permit 2	-26-8

Print Time:

9:56 PM

Local TOD Schedule					
<u>Time</u>	<u>Plan</u>	<u>DOW</u>			
0000	Flash	Su M T W	/ThFS		
0600	Free	MTW	/ Th F		
0700	Free	Su	S		

Print Date: 10/4/2021

To 0000. Itti 37 Avaitti

Print Time: 9:56 PM

Currer	Current Time of Day Function						
<u>Time</u>	<u>Function</u>	Settings *	Day of Week				
0000	TOD OUTPUTS		SuM T W ThF S				
0600	TOD OUTPUTS	5	M T W ThF				
0700	TOD OUTPUTS		M T W ThF				
1930	TOD OUTPUTS	5	M T W ThF				

	Local	Time of Day Function			
	<u>Time</u>	<u>Function</u>	Settings *	Day of Week	
	0000	TOD OUTPUTS		SuM T W ThF S	
-	0600	TOD OUTPUTS	5	M T W ThF	
-	0700	TOD OUTPUTS	5	Su S	
-	0700	TOD OUTPUTS		M T W ThF	
_	1930	TOD OUTPUTS	5	M T W ThF	

* Settings
Blank - FREE - Phase Bank 1, Max 1 Blank - Plan - Phase Bank 1, Max 2 1 - Phase Bank 2, Max 1 2 - Phase Bank 2, Max 2 3 - Phase Bank 3, Max 1 4 - Phase Bank 3, Max 2 5 - EXTERNAL PERMIT 1 6 - EXTERNAL PERMIT 2 7 - X-PED OMIT
5 - EXTERNAL PERMIT 1 6 - EXTERNAL PERMIT 2

No Calendar Defined/Enabled						

Attachement C PSCF, Historical Data, and Growth Rate

CATEG	DRY: 8700 MIAMI-DADE NORTH		MOGEL O OC
WEEK	DATES	SF	MOCF: 0.96 PSCF
1 2 3 4	01/01/2022 - 01/01/2022 01/02/2022 - 01/08/2022 01/09/2022 - 01/15/2022 01/16/2022 - 01/22/2022	1.06 1.04 1.02 1.01	1.10 1.08 1.06 1.05
* * * * * * * * * * * * * * * * * * *	01/23/2022 - 01/29/2022 01/30/2022 - 02/05/2022 02/06/2022 - 02/12/2022 02/13/2022 - 02/19/2022 02/20/2022 - 02/26/2022 02/27/2022 - 03/05/2022 03/06/2022 - 03/12/2022 03/13/2022 - 03/12/2022 03/13/2022 - 03/12/2022 03/20/2022 - 03/26/2022 03/20/2022 - 03/26/2022 03/27/2022 - 04/09/2022 04/03/2022 - 04/09/2022 04/10/2022 - 04/16/2022 04/17/2022 - 04/30/2022 04/17/2022 - 05/07/2022 05/01/2022 - 05/14/2022 05/01/2022 - 05/21/2022 05/05/2022 - 05/21/2022 05/29/2022 - 05/28/2022 05/29/2022 - 06/04/2022 06/05/2022 - 06/11/2022 06/12/2022 - 06/18/2022 06/19/2022 - 06/18/2022 06/19/2022 - 07/09/2022 07/10/2022 - 07/09/2022 07/10/2022 - 07/16/2022 07/10/2022 - 07/16/2022 07/131/2022 - 07/16/2022 07/31/2022 - 07/16/2022 07/31/2022 - 07/16/2022 07/31/2022 - 07/16/2022 07/11/2022 - 07/16/2022 07/11/2022 - 07/16/2022 07/11/2022 - 07/16/2022 07/11/2022 - 07/16/2022 07/11/2022 - 07/16/2022 07/11/2022 - 09/10/2022 07/31/2022 - 09/10/2022 09/11/2022 - 09/10/2022 09/11/2022 - 09/10/2022 09/11/2022 - 09/10/2022 10/09/2022 - 10/01/2022 10/09/2022 - 10/01/2022 10/09/2022 - 10/05/2022 11/13/2022 - 11/12/2022 11/13/2022 - 11/12/2022 11/13/2022 - 11/12/2022 11/27/2022 - 12/17/2022 11/20/2022 - 11/12/2022 11/20/2022 - 12/17/2022 11/20/2022 - 12/17/2022 12/11/2022 - 12/17/2022 12/11/2022 - 12/17/2022 12/18/2022 - 12/17/2022	1.00 0.98 0.97 0.96 0.96 0.96 0.96 0.96 0.996 0.996 0.996 0.996 0.997 0.997 0.998 0.999 1.001 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.03 1.04 1.05 1.03 1.01 1.05 1.03 1.01 1.02 1.03 1.01 1.05 1.03 1.01 1.02 1.03 1.01 1.01 1.02 1.03 1.04 1.05 1.01 1.01 1.01 1.02 1.03 1.04 1.05 1.01 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.07 1.08 1.099 1.000 1.01 1.01 1.02 1.03 1.04 1.05 1.05 1.005 1.005 1.001 1.01 1.01 1.02 1.03 1.04 1.05 1.05 1.06 1.07 1.07 1.08 1.099 1.000 1.01 1.01 1.02 1.03 1.04 1.05 1.05 1.06 1.07 1.07 1.08 1.099 1.000 1.001 1.001 1.005 1.006 1	1.04 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00

^{*} PEAK SEASON

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2022 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 8668 - NW 19 STREET 400' WEST OF NW 102 AVE

YEAR	AADT	DI	RECTION 1	DIF	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2022	8800 F		4200	W	4600	9.00	56.50	7.60
2021	8600 C	E	4100	W	4500	9.00	55.00	7.00
2020	5400 X		0		0	9.00	56.00	8.90
2019	6000 E					9.00	56.00	8.70
2018	5400 V	E	2700	W	2700	9.00	54.30	8.80
2017	6000 R	E	3000	W	3000	9.00	56.10	8.50
2016	6200 T	E	3100	W	3100	9.00	56.10	8.00
2015	6400 S	E	3200	W	3200	9.00	57.40	10.20
2014	6400 F	E	3200	W	3200	9.00	59.30	12.00
2013	6400 C	E	3200	W	3200	9.00	58.90	14.20

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2022 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 8229 - NW 107TH AVE, 200' NORTH OF NW 12TH STREET

YEAR	AADT	DIRECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2022	40500 F	N 21000	S 19500	9.00	54.70	7.60
2021	41500 C	N 21500	S 20000	9.00	54.30	7.00
2020	43500 T	N 22500	S 21000	9.00	54.20	8.90
2019	45500 S	N 23500	S 22000	9.00	54.60	8.70
2018	45500 F	N 23500	S 22000	9.00	54.30	8.80
2017	44500 C	N 23000	S 21500	9.00	55.00	8.50
2016	47000 T	N 25000	S 22000	9.00	54.50	8.00
2015	45000 S	N 24000	S 21000	9.00	54.70	10.20
2014	43500 F	N 23000	S 20500	9.00	54.50	12.00
2013	43500 C	N 23000	S 20500	9.00	52.40	16.20

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

Traffic Trends - V03.a NW 19 STREET 400 -- WEST OF NW 102 AVE

FIN# 1234 Location 1 County: Station #: Highway:

Year

2013

Miami-Dade (87) 8668 NW 19 STREET 400

Traffic (ADT/AADT)

Trend**

5700

Count*

6400

2014 2015 2016 2017 2018 2019 2020 2021 2022	6400 6400 6200 6000 5400 6000 N/A 8600 8800	6200 6400 6600 6800 6900 7000 N/A 7200 7300
	3 Opening Yea	r Trend
2023	N/A	7300
	024 Mid-Year T	
2024	N/A	7400
	26 Design Year	
2026	N/A	7500
TRAN	PLAN Forecas	ts/I rends

Trend R-squared: 36.26%
Compounded Annual Historic Growth Rate: 2.79%
Compounded Growth Rate (2022 to Design Year): 0.68%
Printed: 15-Feb-24

Exponential Growth Option

*Axle-Adjusted

Traffic Trends - V03.a NW 107TH AVE -- 200' NORTH OF NW 12TH STREET

FIN# 1234 Location 3

County:	
Station #:	
Highway:	

Miami-Dade (87) 8229 NW 107TH AVE

	Traffic (ADT/AADT)				
Year	Count*	Trend**			
2013	43500	45000			
2014	43500	44600			
2015	45000	44300			
2016	47000	44100			
2017	44500	43900			
2018	45500	43800			
2019	45500	43700			
2020	N/A	N/A			
2021	41500	43600			
2022	40500	43500			
202	3 Opening Yea	r Trend			
2023	N/A	43400			
20	024 Mid-Year ⊺	rend			
2024	N/A	43400			
202	26 Design Year	Trend			
2026	N/A	43300			
TRAN	PLAN Forecas	ts/Trends			

Trend R-squared: 24.98%
Compounded Annual Historic Growth Rate: -0.38%
Compounded Growth Rate (2022 to Design Year): -0.12%
Printed: 15-Feb-24

Exponential Growth Option

*Axle-Adjusted

Traffic Trends - V03.a NW 107TH AVE -- 200' NORTH OF NW 12TH STREET

FIN# 1234 Location 3

County:	Miami-Dade (87)			
Station #:	8229			
Highway:	NW 107TH AVE			

** Annual Trend Increase:	-326
Trend R-squared:	23.77%
Trend Annual Historic Growth Rate:	-0.71%
Trend Growth Rate (2022 to Design Year):	-0.76%
Printed:	15-Feb-24
Straight Line Growth Option	

Traffic (ADT/AADT)						
Year	Count*	Trend**				
2013	43500	45400				
2014	43500	45100				
2015	45000	44800				
2016	47000	44500				
2017	44500	44100				
2018	45500	43800				
2019	45500	43500				
2020	N/A	N/A				
2021	41500	42800				
2022	40500	42500				
202	3 Opening Yea	r Trend				
2023	N/A	42200				
	024 Mid-Year T					
2024	N/A	41800				
	26 Design Year					
2026	N/A	41200				
TRAN	PLAN Forecas	ts/Trends				

*Axle-Adjusted

Traffic Trends - V03.a NW 19 STREET 400 -- WEST OF NW 102 AVE

FIN# 1234 Location 1 County: Mian
Station #:
Highway: NW 19

Miami-Dade (87) 8668 NW 19 STREET 400

** Annual Trend Increase:	246
Trend R-squared:	40.95%
Trend Annual Historic Growth Rate:	4.56%
Trend Growth Rate (2022 to Design Year):	3.16%
Printed:	15-Feb-24
Straight Line Growth Option	

Traffic (ADT/AADT)					
Year	Count*	Trend**			
2013	6400	5600			
2014	6400	5900			
2015	6400	6100			
2016	6200	6400			
2017	6000	6600			
2018	5400	6900			
2019	6000	7100			
2020	N/A	N/A			
2021	8600	7600			
2022	8800	7900			
	3 Opening Yea				
2023	N/A	8100			
2024)24 Mid-Year ⊺ N/A	rena 8400			
_	10/A 26 Design Year				
2026	o Design Teal N/A	8900			
	PLAN Forecas				

*Axle-Adjusted

Traffic Trends - V03.a NW 107TH AVE -- 200' NORTH OF NW 12TH STREET

FIN#	1234
Location	3

County:	Miami-Dade (87)			
Station #:	8229			
Highway:	NW 107TH AVE			

Year 2013

2014

Traffic (ADT/AADT)

Trend**

45000

44600

Count*

43500

43500

Trend R-squared: 5.78%
Compounded Annual Historic Growth Rate: -0.38%
Compounded Growth Rate (2022 to Design Year): -0.12%
Printed: 15-Feb-24

Decaying Exponential Growth Option

*Axle-Adjusted

Traffic Trends - V03.a NW 19 STREET 400 -- WEST OF NW 102 AVE

FIN# 1234 Location 1 County: Station #: Highway: Miami-Dade (87) 8668 NW 19 STREET 400

	Traffic (ADT/AADT)				
Year	Count*	Trend**			
2013	6400	5700			
2014	6400	6200			
2015	6400	6400			
2016	6200	6600			
2017	6000	6800			
2018	5400	6900			
2019	6000	7000			
2020	N/A	N/A			
2021	8600	7200			
2022	8800	7300			
200	0 On a min m V a a	T			
	3 Opening Yea				
2023	N/A	7300			
	024 Mid-Year T				
2024	N/A	7400			
2026	26 Design Year N/A	7500			
	•				
TRAN	PLAN Forecas	ts/Trenus			

Trend R-squared: 19.23%
Compounded Annual Historic Growth Rate: 2.79%
Compounded Growth Rate (2022 to Design Year): 0.68%
Printed: 15-Feb-24

Decaying Exponential Growth Option

*Axle-Adjusted

Growth Rate Trend Analysis Calcualtions

Description	8229		8668			
Option	Linear	Exponential	Decaying Exponential	Linear	Exponential	Decaying Exponential
Trend Growth Rate 5 years (1)	-0.71	-0.38	-0.38	4.56	2.79	2.79
Adjusted Growth Rate 5-years (2)	0.50	0.50	0.50	4.56	2.79	2.79
Trend R-squared 5 years	23.77	24.98	5.78	40.95	36.26	19.23
Growth Rate with highest R-squared (5-year)	0.50 4.56					
Average Growth Rate (5-year)	2.53					
Growth Rate Used	2.53					

Notes:

1: Refer to Trend Analysis Chart . 2017 to 2022 historical data

2: If the resulting growth rate is negative, a 0.5 growth rate was used

What Is R-squared?

R-squared is a statistical measure of how close the data are to the fitted regression line. It is also known as the coefficient of determination, or the coefficient of multiple determination for multiple regression.

The definition of R-squared is fairly straight-forward; it is the percentage of the response variable variation that is explained by a linear model. Or:

R-squared = Explained variation / Total variation

R-squared is always between 0 and 100%:

0% indicates that the model explains none of the variability of the response data around its mean.

100% indicates that the model explains all the variability of the response data around its mean.

In general, the higher the R-squared, the better the model fits your data. However, there are important conditions for this guideline that I'll talk about both in this post and my next post.

Attachement D Future Turning Movement Volumes

FUTURE TURNING MOVEMENT VOLUME ANALYSIS

NW 107th Ave & NW 19th St AM Peak Hour

	NW 107th Ave			NW 107th Ave			NW 19th St			NW 19th St		
	Northbound			Southbound			Eastbound			Westbound		
Description		Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)		1,672	450	249	769					190		181
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	0	1739	468	259	800	0	0	0	0	198	0	188
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	0	1,828	492	272	841	0	0	0	0	208	0	198
Project			8	5						7		4
2026 Total Traffic	0	1,828	500	277	841	0	0	0	0	215	0	202

NW 107th Ave & NW 19th St PM Peak Hour

		NW 107th A	ve		NW 107th Av	'e		NW 19th 9	St		NW 19th 9	St
		Northbound	d		Southbound	k		Eastboun	d		Westboun	nd
Description		Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)		931	143	223	1,258					304		182
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	0	968	149	232	1308	0	0	0	0	316	0	189
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	0	1,018	156	244	1,375	0	0	0	0	332	0	199
Project			9	4						8		5
2026 Total Traffic	0	1,018	165	248	1,375	0	0	0	0	340	0	204

NW 19th St & Full Open Driveway AM Peak Hour

	Dou	ble Tree by	Hilton		Driveway			NW 19th	St		NW 19th 9	St
		Northbound	d		Southbound	i		Eastboun	ıd		Westboun	ıd
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)	16	3	63	3		1	30	550	11	44	335	6
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	17	3	66	3	0	1	31	572	11	46	348	6
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	17	3	69	3	0	1	33	601	12	48	366	7
Project								13		18	11	
2026 Total Traffic	17	3	69	3	0	1	33	614	12	66	377	7

NW 19th St & Full Open Driveway PM Peak Hour

	Dou	ble Tree by	Hilton		Driveway			NW 19th 9	St		NW 19th 9	St
		Northbound	d		Southbound	i		Eastboun	ıd		Westbour	nd
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)	18		67	5	3	12	2	390	30	128	374	4
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	19	0	70	5	3	12	2	406	31	133	389	4
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	20	0	73	5	3	13	2	426	33	140	409	4
Project								13		20	13	
2026 Total Traffic	20	0	73	5	3	13	2	439	33	160	422	4

NW 19th St & Driveway AM Peak Hour

		Driveway						NW 19th	St		NW 19th S	St
		Northboun	d		Southbound	d		Eastboun	ıd		Westbour	ıd
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)			9					572	3		389	
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	0	0	9	0	0	0	0	595	3	0	405	0
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	0	0	10	0	0	0	0	625	3	0	425	0
Project			31						31		18	
2026 Total Traffic	0	0	41	0	0	0	0	625	34	0	443	0

NW 19th St & Driveway PM Peak Hour

		Driveway						NW 19th	St		NW 19th 9	St
		Northbound	d		Southbound	l		Eastboun	ıd		Westboun	ıd
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)			10					458	8		492	
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	0	0	10	0	0	0	0	476	8	0	512	0
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	0	0	11	0	0	0	0	501	9	0	538	0
Project			32						33		33	
2026 Total Traffic	0	0	43	0	0	0	0	501	42	0	571	0

NW 102nd Ave & NW 19th St AM Peak Hour

	1	NW 102nd A	ve	ı	NW 102nd Av	/e		NW 19th 9	St		NW 19th 9	St
		Northboun	d		Southbound	k		Eastboun	ıd		Westboun	ıd
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)	8	12	3	184	22	121	273	302	42	6	259	260
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	8	12	3	191	23	126	284	314	44	6	269	270
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	9	13	3	201	24	132	298	330	46	7	283	284
Project						4	14	11			14	
2026 Total Traffic	9	13	3	201	24	136	312	341	46	7	297	284

NW 102nd Ave & NW 19th St PM Peak Hour

	1	NW 102nd A	ve	l	W 102nd A	/e		NW 19th 9	St		NW 19th 9	3t
		Northbound	d		Southbound	k		Eastboun	ıd		Westboun	ıd
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)	53	22	13	181	21	172	67	375	16	3	280	109
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	55	23	14	188	22	179	70	390	17	3	291	113
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	58	24	14	198	23	188	73	410	17	3	306	119
Project						5	17	15			15	
2026 Total Traffic	58	24	14	198	23	193	90	425	17	3	321	119

NW 97th Ave & NW 17th St AM Peak Hour

		NW 97th Av	е		NW 97th Av	е		NW 17th 9	St			
		Northbound	d		Southbound	t		Eastboun	d		Westboun	nd
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)	437	1,064			477	145	177		286			
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	454	1107	0	0	496	151	184	0	297	0	0	0
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	478	1,163	0	0	521	159	194	0	313	0	0	0
Project	9					5	4		7			
2026 Total Traffic	487	1,163	0	0	521	164	198	0	320	0	0	0

NW 97th Ave & NW 17th St PM Peak Hour

		NW 97th Av	re		NW 97th Av	9		NW 17th 9	St			
		Northboun	d		Southbound	k		Eastboun	d		Westboun	ıd
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Existing Traffic (1/24/2024)	224	782			1,309	101	134		509			
Season Adjustment Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
2024 Peak Season Traffic	233	813	0	0	1361	105	139	0	529	0	0	0
Annual Growth Rate	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%	2.53%
Committed Developments:												
2026 Background Traffic	245	855	0	0	1,431	110	147	0	556	0	0	0
Project	9					6	5		10			
2026 Total Traffic	254	855	0	0	1,431	116	152	0	566	0	0	0

Attachement E SYNCHRO Analyses

	•	4	†	/	↓	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	Ť	7	ተተኈ	, j	ተተተ	
Traffic Volume (vph)	198	188	1739	259	800	
Future Volume (vph)	198	188	1739	259	800	
Turn Type	Prot	Prot	NA	pm+pt	NA	
Protected Phases	4	4	6	5	2	
Permitted Phases		4		2		
Detector Phase	4	4	6	5	2	
Switch Phase						
Minimum Initial (s)	7.0	7.0	16.0	5.0	16.0	
Minimum Split (s)	24.1	24.1	24.8	11.8	24.8	
Total Split (s)	24.2	24.2	124.0	21.8	145.8	
Total Split (%)	14.2%	14.2%	72.9%	12.8%	85.8%	
Yellow Time (s)	4.0	4.0	4.4	4.4	4.4	
All-Red Time (s)	2.1	2.1	2.4	2.4	2.4	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	6.1	6.8	6.8	6.8	
_ead/Lag			Lag	Lead		
_ead-Lag Optimize?			Yes	Yes		
Recall Mode	None	None	C-Max	None	C-Max	
Act Effct Green (s)	18.1	18.1	117.2	139.0	139.0	
Actuated g/C Ratio	0.11	0.11	0.69	0.82	0.82	
//c Ratio	1.12	0.66	0.69	1.31	0.20	
Control Delay	167.0	31.9	16.2	211.3	3.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	167.0	31.9	16.2	211.3	3.5	
-OS	F	C	В	F	A	
Approach Delay	101.3		16.2	•	54.4	
Approach LOS	F		В		D	
ntersection Summary						
Cycle Length: 170						
Actuated Cycle Length: 170)					
Offset: 87 (51%), Reference		2:SRTI	and 6·NR	T Start o	of Yellow	
Natural Cycle: 90	cu to priasc	, 2.0DTL	and O.ND	i, otait c	n i chow	
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 1.31	o. an iatou					
ntersection Signal Delay: 3	36.2			lr	ntersection	LOS: D
ntersection Capacity Utiliza						of Service E
Analysis Period (min) 15	Allon 00.0 /)		1	OO LCVCI O	1 OCIVICE E
,			.	0		
Splits and Phases: 101: I	NW 107th <i>A</i>	Avenue &	NW 19th	Street		
▼ [™] Ø2 (R)						▼ Ø4
145.8 s						24.2 s
<u> </u>						
Ø5 Ø6	(R)					

	<	•	†	-	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	211	200	2348	276	851
v/c Ratio	1.12	0.66	0.69	1.31	0.20
Control Delay	167.0	31.9	16.2	211.3	3.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	167.0	31.9	16.2	211.3	3.5
Queue Length 50th (ft)	~269	53	512	~331	65
Queue Length 95th (ft)	#449	148	554	#531	75
Internal Link Dist (ft)	720		370		397
Turn Bay Length (ft)				150	
Base Capacity (vph)	188	301	3412	210	4157
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.12	0.66	0.69	1.31	0.20

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	•	†	/	>	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	ተተ _ጉ		ሻ	^
Traffic Volume (veh/h)	198	188	1739	468	259	800
Future Volume (veh/h)	198	188	1739	468	259	800
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	211	200	1850	498	276	851
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	190	169	2770	719	261	4175
Arrive On Green	0.11	0.11	0.69	0.69	0.09	0.82
Sat Flow, veh/h	1781	1585	4186	1043	1781	5274
Grp Volume(v), veh/h	211	200	1557	791	276	851
Grp Sat Flow(s),veh/h/ln	1781	1585	1702	1656	1781	1702
Q Serve(g_s), s	18.1	18.1	44.5	48.3	15.0	6.2
Cycle Q Clear(g_c), s	18.1	18.1	44.5	48.3	15.0	6.2
Prop In Lane	1.00	1.00		0.63	1.00	
Lane Grp Cap(c), veh/h	190	169	2347	1142	261	4175
V/C Ratio(X)	1.11	1.19	0.66	0.69	1.06	0.20
Avail Cap(c_a), veh/h	190	169	2347	1142	261	4175
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	75.9	76.0	15.1	15.7	52.1	3.4
Incr Delay (d2), s/veh	98.8	127.8	1.5	3.5	71.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	13.5	21.1	17.4	19.0	16.6	2.0
Unsig. Movement Delay, s/ve						
LnGrp Delay(d),s/veh	174.7	203.8	16.6	19.2	123.2	3.5
LnGrp LOS	F	F	В	В	F	Α
Approach Vol, veh/h	411		2348			1127
Approach Delay, s/veh	188.8		17.5			32.8
Approach LOS	F		В			С
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		145.8		24.2	21.8	124.0
Change Period (Y+Rc), s		6.8		6.1	6.8	6.8
Max Green Setting (Gmax), s		139.0		18.1	15.0	117.2
Max Q Clear Time (g_c+l1),	S	8.2		20.1	17.0	50.3
Green Ext Time (p_c), s		6.0		0.0	0.0	32.0
Intersection Summary						
HCM 6th Ctrl Delay			40.0			
HCM 6th LOS			D			

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† ‡		*	† \$			4			4	
Traffic Vol, veh/h	31	572	11	46	348	6	17	3	66	3	0	1
Future Vol, veh/h	31	572	11	46	348	6	17	3	66	3	0	1
Conflicting Peds, #/hr	0	0	2	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	125	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	82	82	82	82	82	82	82	82	82	82	82	82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	38	698	13	56	424	7	21	4	80	4	0	1
Major/Minor N	/lajor1			Major2		_	Minor1		Λ	/linor2		
Conflicting Flow All	431	0	0	713	0	0	1107	1326	358	967	1329	216
Stage 1	-	-	-	-	-	-	783	783	-	540	540	210
Stage 2	<u>-</u>	_	_	_	_	-	324	543	_	427	789	<u>-</u>
Critical Hdwy	4.14	_	_	4.14	_	-	5	5	4.5	5	5	4.5
Critical Hdwy Stg 1	-	_	_	-	_	_	5	5	-	5	5	-
Critical Hdwy Stg 2	-	_	-	-	-	-	5	5	-	5	5	-
Follow-up Hdwy	2.22	-	_	2.22	_	_	3	3	3	3	3	3
Pot Cap-1 Maneuver	1125	-	-	883	-	-	395	314	887	456	313	1001
Stage 1	-	-	-	-	-	-	551	551	-	704	704	-
Stage 2	-	-	-	-	-	-	873	702	-	788	547	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1125	-	-	881	-	-	359	277	885	375	276	1001
Mov Cap-2 Maneuver	-	-	-	-	-	-	433	382	-	462	365	-
Stage 1	-	-	-	-	-	-	519	519	-	665	659	-
Stage 2	-	-	-	-	-	-	817	657	-	671	515	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			1.1			11			11.8		
HCM LOS	0.7			1.1			В			В		
TIOWI LOO							U			U		
Minor Lane/Major Mvm	t l	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR :				
Capacity (veh/h)		707	1125	-	-	881	-	-	534			
HCM Lane V/C Ratio		0.148	0.034	-	-	0.064	-		0.009			
HCM Control Delay (s)		11	8.3	-	-	9.4	-	-	11.8			
HCM Lane LOS		В	Α	-	-	Α	-	-	В			
HCM 95th %tile Q(veh)		0.5	0.1	-	-	0.2	-	-	0			

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIK	WDL	↑ ↑	NDL	NDIX 7
Traffic Vol, veh/h	595	3	0	405	0	9
Future Vol, veh/h	595	3	0	405	0	9
Conflicting Peds, #/hr	0	0	0	403	0	0
	Free	Free		Free		
Sign Control RT Channelized			Free		Stop	Stop
	-	None	-	None	-	None
Storage Length	_	-	-	-	-	0
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	700	4	0	476	0	11
Major/Minor Ma	ajor1	N	Major2	N	/linor1	
Conflicting Flow All	0	0		<u></u>		352
Stage 1	-	-	-	-	-	352
9						
Stage 2	-	-	-	-	-	4 5
Critical Hdwy	-	-	-	-	-	4.5
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3
Pot Cap-1 Maneuver	-	-	0	-	0	892
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	892
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
			14/5			
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.1	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBT	
Capacity (veh/h)		892		-		
HCM Lane V/C Ratio		0.012	_	_	_	
HCM Control Delay (s)		9.1	_			
		9.1 A			_	
HUMIANAINS						
HCM Lane LOS HCM 95th %tile Q(veh)		0	-	-		

Intersection												
Intersection Delay, s/veh	37.5											
Intersection LOS	E											
	_											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† }		*	†		*	f)		*	f)	
Traffic Vol, veh/h	284	314	44	6	269	270	8	12	3	191	23	126
Future Vol, veh/h	284	314	44	6	269	270	8	12	3	191	23	126
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	342	378	53	7	324	325	10	14	4	230	28	152
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	31.9			53.6			14.3			23.7		
HCM LOS	D			F			В			С		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	
Lane Vol Left, %		NBLn1 100%	0%	100%	EBLn2 0%	0%	WBLn1 100%	WBLn2	0%	SBLn1 100%	0%	
Vol Left, % Vol Thru, %		100% 0%	0% 80%	100% 0%	0% 100%	0% 70%	100% 0%	0% 100%	0% 25%	100% 0%	0% 15%	
Vol Left, % Vol Thru, % Vol Right, %		100%	0% 80% 20%	100%	0%	0%	100%	0%	0%	100%	0% 15% 85%	
Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 80% 20% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 70% 30% Stop	100% 0%	0% 100% 0% Stop	0% 25% 75% Stop	100% 0% 0% Stop	0% 15% 85% Stop	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 8	0% 80% 20% Stop 15	100% 0% 0% Stop 284	0% 100% 0% Stop 209	0% 70% 30% Stop 149	100% 0% 0% Stop 6	0% 100% 0% Stop 179	0% 25% 75% Stop 360	100% 0% 0% Stop 191	0% 15% 85% Stop 149	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 8	0% 80% 20% Stop 15	100% 0% 0% Stop 284 284	0% 100% 0% Stop 209	0% 70% 30% Stop 149	100% 0% 0% Stop 6	0% 100% 0% Stop 179	0% 25% 75% Stop 360 0	100% 0% 0% Stop 191 191	0% 15% 85% Stop 149	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 8 8	0% 80% 20% Stop 15 0	100% 0% 0% Stop 284 284	0% 100% 0% Stop 209 0	0% 70% 30% Stop 149 0	100% 0% 0% Stop 6 6	0% 100% 0% Stop 179 0	0% 25% 75% Stop 360 0	100% 0% 0% Stop 191 191	0% 15% 85% Stop 149 0 23	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 8 8 0	0% 80% 20% Stop 15 0 12	100% 0% 0% Stop 284 284 0	0% 100% 0% Stop 209 0 209	0% 70% 30% Stop 149 0 105	100% 0% 0% Stop 6 6 0	0% 100% 0% Stop 179 0 179	0% 25% 75% Stop 360 0 90 270	100% 0% 0% Stop 191 191 0	0% 15% 85% Stop 149 0 23 126	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 8 8 0 0	0% 80% 20% Stop 15 0 12 3	100% 0% 0% Stop 284 284 0 0	0% 100% 0% Stop 209 0 209 0	0% 70% 30% Stop 149 0 105 44 179	100% 0% 0% Stop 6 6 0	0% 100% 0% Stop 179 0 179 0	0% 25% 75% Stop 360 0 90 270 433	100% 0% 0% Stop 191 191 0 0	0% 15% 85% Stop 149 0 23 126 180	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 8 8 0 0	0% 80% 20% Stop 15 0 12 3 18	100% 0% 0% Stop 284 284 0 0 342	0% 100% 0% Stop 209 0 209 0 252 6	0% 70% 30% Stop 149 0 105 44 179	100% 0% 0% Stop 6 6 0 0	0% 100% 0% Stop 179 0 179 0 216	0% 25% 75% Stop 360 0 90 270 433	100% 0% 0% Stop 191 191 0 0 230	0% 15% 85% Stop 149 0 23 126 180	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 8 8 0 0 10 6	0% 80% 20% Stop 15 0 12 3 18 6	100% 0% 0% Stop 284 284 0 0 342 6	0% 100% 0% Stop 209 0 209 0 252 6	0% 70% 30% Stop 149 0 105 44 179 6	100% 0% 0% Stop 6 6 0 0 7 6	0% 100% 0% Stop 179 0 179 0 216 6	0% 25% 75% Stop 360 0 90 270 433 6 0.994	100% 0% 0% Stop 191 191 0 0 230 6	0% 15% 85% Stop 149 0 23 126 180 6	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		100% 0% 0% Stop 8 8 0 0 10 6 0.031 11.502	0% 80% 20% Stop 15 0 12 3 18 6 0.054 10.843	100% 0% 0% Stop 284 284 0 0 342 6 0.855 8.997	0% 100% 0% Stop 209 0 209 0 252 6 0.594 8.482	0% 70% 30% Stop 149 0 105 44 179 6 0.411 8.269	100% 0% 0% Stop 6 6 0 7 6 0.019 9.312	0% 100% 0% Stop 179 0 179 0 216 6 0.528 8.798	0% 25% 75% Stop 360 0 90 270 433 6 0.994 8.258	100% 0% 0% Stop 191 191 0 0 230 6 0.63 9.858	0% 15% 85% Stop 149 0 23 126 180 6 0.436 8.752	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		100% 0% 0% Stop 8 8 0 0 10 6 0.031 11.502 Yes	0% 80% 20% Stop 15 0 12 3 18 6 0.054 10.843 Yes	100% 0% 0% Stop 284 284 0 0 342 6 0.855 8.997 Yes	0% 100% 0% Stop 209 0 209 0 252 6 0.594 8.482 Yes	0% 70% 30% Stop 149 0 105 44 179 6 0.411 8.269 Yes	100% 0% 0% Stop 6 6 0 7 6 0.019 9.312 Yes	0% 100% 0% Stop 179 0 179 0 216 6 0.528 8.798 Yes	0% 25% 75% Stop 360 0 90 270 433 6 0.994 8.258 Yes	100% 0% 0% Stop 191 191 0 0 230 6 0.63 9.858 Yes	0% 15% 85% Stop 149 0 23 126 180 6 0.436 8.752 Yes	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		100% 0% 0% Stop 8 8 0 0 10 6 0.031 11.502 Yes 311	0% 80% 20% Stop 15 0 12 3 18 6 0.054 10.843 Yes 330	100% 0% 0% Stop 284 284 0 0 342 6 0.855 8.997 Yes 404	0% 100% 0% Stop 209 0 209 0 252 6 0.594 8.482 Yes 426	0% 70% 30% Stop 149 0 105 44 179 6 0.411 8.269 Yes 435	100% 0% 0% Stop 6 6 0 0 7 6 0.019 9.312 Yes 385	0% 100% 0% Stop 179 0 179 0 216 6 0.528 8.798 Yes 411	0% 25% 75% Stop 360 0 90 270 433 6 0.994 8.258 Yes 442	100% 0% 0% Stop 191 191 0 0 230 6 0.63 9.858 Yes 366	0% 15% 85% Stop 149 0 23 126 180 6 0.436 8.752 Yes 411	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		100% 0% 0% Stop 8 8 0 0 10 6 0.031 11.502 Yes 311 9.278	0% 80% 20% Stop 15 0 12 3 18 6 0.054 10.843 Yes 330 8.619	100% 0% 0% Stop 284 284 0 0 342 6 0.855 8.997 Yes 404 6.744	0% 100% 0% Stop 209 0 209 0 252 6 0.594 8.482 Yes 426 6.229	0% 70% 30% Stop 149 0 105 44 179 6 0.411 8.269 Yes 435 6.016	100% 0% 0% Stop 6 6 0 0 7 6 0.019 9.312 Yes 385 7.062	0% 100% 0% Stop 179 0 179 0 216 6 0.528 8.798 Yes 411 6.548	0% 25% 75% Stop 360 0 90 270 433 6 0.994 8.258 Yes 442 6.007	100% 0% 0% Stop 191 191 0 0 230 6 0.63 9.858 Yes 366 7.616	0% 15% 85% Stop 149 0 23 126 180 6 0.436 8.752 Yes 411 6.51	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 8 8 0 0 10 6 0.031 11.502 Yes 311 9.278 0.032	0% 80% 20% Stop 15 0 12 3 18 6 0.054 10.843 Yes 330 8.619 0.055	100% 0% 0% Stop 284 284 0 0 342 6 0.855 8.997 Yes 404 6.744 0.847	0% 100% 0% Stop 209 0 209 0 252 6 0.594 8.482 Yes 426 6.229 0.592	0% 70% 30% Stop 149 0 105 44 179 6 0.411 8.269 Yes 435 6.016 0.411	100% 0% 0% Stop 6 6 0 0 7 6 0.019 9.312 Yes 385 7.062 0.018	0% 100% 0% Stop 179 0 179 0 216 6 0.528 8.798 Yes 411 6.548 0.526	0% 25% 75% Stop 360 0 90 270 433 6 0.994 8.258 Yes 442 6.007 0.98	100% 0% 0% Stop 191 191 0 0 230 6 0.63 9.858 Yes 366 7.616 0.628	0% 15% 85% Stop 149 0 23 126 180 6 0.436 8.752 Yes 411 6.51 0.438	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		100% 0% 0% Stop 8 8 0 0 10 6 0.031 11.502 Yes 311 9.278 0.032 14.6	0% 80% 20% Stop 15 0 12 3 18 6 0.054 10.843 Yes 330 8.619 0.055 14.2	100% 0% 0% Stop 284 284 0 0 342 6 0.855 8.997 Yes 404 6.744 0.847 46.5	0% 100% 0% Stop 209 0 209 0 252 6 0.594 8.482 Yes 426 6.229 0.592 23	0% 70% 30% Stop 149 0 105 44 179 6 0.411 8.269 Yes 435 6.016 0.411 16.7	100% 0% 0% Stop 6 6 0 0 7 6 0.019 9.312 Yes 385 7.062 0.018 12.2	0% 100% 0% Stop 179 0 179 0 216 6 0.528 8.798 Yes 411 6.548 0.526 21	0% 25% 75% Stop 360 0 90 270 433 6 0.994 8.258 Yes 442 6.007 0.98 70.6	100% 0% 0% Stop 191 191 0 0 230 6 0.63 9.858 Yes 366 7.616 0.628 28.1	0% 15% 85% Stop 149 0 23 126 180 6 0.436 8.752 Yes 411 6.51 0.438 18.1	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 8 8 0 0 10 6 0.031 11.502 Yes 311 9.278 0.032	0% 80% 20% Stop 15 0 12 3 18 6 0.054 10.843 Yes 330 8.619 0.055	100% 0% 0% Stop 284 284 0 0 342 6 0.855 8.997 Yes 404 6.744 0.847	0% 100% 0% Stop 209 0 209 0 252 6 0.594 8.482 Yes 426 6.229 0.592	0% 70% 30% Stop 149 0 105 44 179 6 0.411 8.269 Yes 435 6.016 0.411	100% 0% 0% Stop 6 6 0 0 7 6 0.019 9.312 Yes 385 7.062 0.018	0% 100% 0% Stop 179 0 179 0 216 6 0.528 8.798 Yes 411 6.548 0.526	0% 25% 75% Stop 360 0 90 270 433 6 0.994 8.258 Yes 442 6.007 0.98	100% 0% 0% Stop 191 191 0 0 230 6 0.63 9.858 Yes 366 7.616 0.628	0% 15% 85% Stop 149 0 23 126 180 6 0.436 8.752 Yes 411 6.51 0.438	

	٠	*	1	†	ļ		
Lane Group	EBL	EBR	NBL	NBT	SBT		
Lane Configurations	ħ	7	*	^	†		
Traffic Volume (vph)	184	297	454	1107	496		
Future Volume (vph)	184	297	454	1107	496		
Turn Type	Prot	pm+ov	pm+pt	NA	NA		
Protected Phases	8	1	1	6	2		
Permitted Phases		8	6				
Detector Phase	8	1	1	6	2		
Switch Phase							
Minimum Initial (s)	7.0	5.0	5.0	16.0	16.0		
Minimum Split (s)	15.0	11.4	11.4	24.4	24.4		
Total Split (s)	21.0	21.4	21.4	88.0	66.4		
Total Split (%)	19.3%	19.6%	19.6%	80.7%	60.9%		
Yellow Time (s)	4.0	4.4	4.4	4.4	4.4		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.4	6.4	6.4	6.4		
Lead/Lag		Lead	Lead		Lag		
Lead-Lag Optimize?		Yes	Yes		Yes		
Recall Mode	None	None	None	C-Max	C-Max		
Act Effct Green (s)	14.3	34.0	82.3	82.3	62.2		
Actuated g/C Ratio	0.13	0.31	0.76	0.76	0.57		
v/c Ratio	0.84	0.44	0.79	0.44	0.35		
Control Delay	75.7	5.1	15.5	5.5	12.3		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	75.7	5.1	15.5	5.5	12.3		
LOS	Е	Α	В	Α	В		
Approach Delay	32.1			8.5	12.3		
Approach LOS	С			Α	В		
Intersection Summary							
Cycle Length: 109							
Actuated Cycle Length: 10							
Offset: 0 (0%), Reference	d to phase 2	:SBT and	6:NBTL,	Start of Y	'ellow		
Natural Cycle: 60							
Control Type: Actuated-Co	oordinated						
Maximum v/c Ratio: 0.84							
Intersection Signal Delay:	13.6			lr	ntersection	n LOS: B	
Intersection Capacity Utiliz				I	CU Level o	of Service C	
Analysis Period (min) 15							
Splits and Phases: 105	: NW 97th Av	/enue & N	IW 17th 9	Street			
•	3 ()	28		-			
7 Ø1 21.4 s	▼ Ø2 (F 66.4s	()					
4	00,75						
Tø6 (R)							
88 s							

	•	•	1	†	ļ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	194	313	478	1165	681
v/c Ratio	0.84	0.44	0.79	0.44	0.35
Control Delay	75.7	5.1	15.5	5.5	12.3
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	75.7	5.1	15.5	5.5	12.3
Queue Length 50th (ft)	133	0	97	135	120
Queue Length 95th (ft)	#250	60	#151	168	159
Internal Link Dist (ft)	997			269	190
Turn Bay Length (ft)			100		
Base Capacity (vph)	243	724	618	2672	1966
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.80	0.43	0.77	0.44	0.35
Intersection Summary					

Queue shown is maximum after two cycles.

⁹⁵th percentile volume exceeds capacity, queue may be longer.

	۶	•	1	†	Ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	7	7	7	^	†		
Traffic Volume (veh/h)	184	297	454	1107	496	151	
Future Volume (veh/h)	184	297	454	1107	496	151	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.97	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	194	313	478	1165	522	159	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	245	419	638	2660	1502	455	
Arrive On Green	0.14	0.14	0.13	0.75	0.56	0.56	
Sat Flow, veh/h	1781	1585	1781	3647	2761	808	
Grp Volume(v), veh/h	194	313	478	1165	347	334	
Grp Sat Flow(s),veh/h/ln	1781	1585	1781	1777	1777	1699	
Q Serve(g_s), s	11.5	15.0	11.7	13.4	11.5	11.7	
Cycle Q Clear(g_c), s	11.5	15.0	11.7	13.4	11.5	11.7	
Prop In Lane	1.00	1.00	1.00			0.48	
Lane Grp Cap(c), veh/h	245	419	638	2660	1001	957	
V/C Ratio(X)	0.79	0.75	0.75	0.44	0.35	0.35	
Avail Cap(c_a), veh/h	245	419	658	2660	1001	957	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	45.5	36.7	8.7	5.1	12.9	12.9	
Incr Delay (d2), s/veh	15.5	6.9	4.0	0.5	1.0	1.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	6.1	8.4	4.6	4.3	4.7	4.6	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	61.0	43.6	12.7	5.6	13.9	14.0	
LnGrp LOS	E	D	В	Α	В	В	
Approach Vol, veh/h	507			1643	681		
Approach Delay, s/veh	50.3			7.7	13.9		
Approach LOS	D			Α	В		
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	20.2	67.8				88.0	21.0
Change Period (Y+Rc), s	6.4	6.4				6.4	6.0
Max Green Setting (Gmax), s	15.0	60.0				81.6	15.0
Max Q Clear Time (g_c+I1), s	13.7	13.7				15.4	17.0
Green Ext Time (p_c), s	0.2	1.6				3.8	0.0
Intersection Summary							
HCM 6th Ctrl Delay			16.8				
HCM 6th LOS			В				

Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS	7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1	7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1	NBT 1828 1828 NA 6 6 16.0 24.8 124.0 72.9% 4.4 2.4 0.0 6.8	SBL 272 272 272 pm+pt 5 2 5 5.0 11.8 21.8 12.8% 4.4 2.4 0.0	SBT ************************************			
Traffic Volume (vph) Future Volume (vph) Future Volume (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Intersection Summary	208 208 Prot 4 4 7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1	198 198 Prot 4 4 4 7.0 24.1 24.2 14.2% 4.0 2.1 0.0	1828 1828 NA 6 6 16.0 24.8 124.0 72.9% 4.4 2.4 0.0 6.8	272 272 pm+pt 5 2 5 5 5.0 11.8 21.8 12.8% 4.4 2.4	841 841 NA 2 2 16.0 24.8 145.8 85.8% 4.4 2.4			
Future Volume (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio w/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS	208 Prot 4 7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1 None	198 Prot 4 4 4 7.0 24.1 24.2 14.2% 4.0 2.1 0.0	1828 1828 NA 6 6 16.0 24.8 124.0 72.9% 4.4 2.4 0.0 6.8	272 pm+pt 5 2 5 5.0 11.8 21.8 12.8% 4.4 2.4	841 841 NA 2 2 16.0 24.8 145.8 85.8% 4.4 2.4			
Furn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Fotal Split (%) Fotal Lost Time (s) Lost Time Adjust (s) Fotal Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio Fotal Delay Fota	Prot 4 7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1 None	Prot 4 4 7.0 24.1 24.2 14.2% 4.0 2.1 0.0	NA 6 6 16.0 24.8 124.0 72.9% 4.4 2.4 0.0 6.8	pm+pt 5 2 5 5 11.8 21.8 12.8% 4.4 2.4	NA 2 2 16.0 24.8 145.8 85.8% 4.4 2.4			
Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Fotal Split (s) Fotal Split (%) Fotal Lost Time (s) Fotal Lost Time (s) Fotal Lost Time (s) Fotal Mode Fotal Mode Fotal Mode Fotal Fotal Fotal Split (%) Fotal Delay Fotal	7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1	7.0 24.1 24.2 14.2% 4.0 2.1 0.0	6 16.0 24.8 124.0 72.9% 4.4 2.4 0.0 6.8	5 2 5 5.0 11.8 21.8 12.8% 4.4 2.4	2 16.0 24.8 145.8 85.8% 4.4 2.4			
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Fotal Split (s) Fotal Split (%) Fotal Lost Time (s) Fotal Lost Time (s) Fotal Lost Time (s) Fotal Mode Fotal Mode Fotal Mode Fotal Fotal Green (s) Fotal Oblay Fotal Delay Fotal De	7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1	7.0 24.1 24.2 14.2% 4.0 2.1 0.0	6 16.0 24.8 124.0 72.9% 4.4 2.4 0.0 6.8	5.0 11.8 21.8 12.8% 4.4 2.4	2 16.0 24.8 145.8 85.8% 4.4 2.4			
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Fotal Split (s) Fotal Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Fotal Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effet Green (s) Actuated g/C Ratio Y/C Ratio Control Delay Queue Delay Fotal Delay LOS Approach Delay Approach LOS Intersection Summary	7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1	7.0 24.1 24.2 14.2% 4.0 2.1 0.0	16.0 24.8 124.0 72.9% 4.4 2.4 0.0 6.8	5.0 11.8 21.8 12.8% 4.4 2.4	16.0 24.8 145.8 85.8% 4.4 2.4			
Switch Phase Minimum Initial (s) Minimum Split (s) Fotal Split (s) Fotal Split (%) Fotal Lost Time (s) Fotal Mode Fotal Mode Fotal Mode Fotal Mode Fotal Mode Fotal Delay	7.0 24.1 24.2 14.2% 4.0 2.1 0.0 6.1	7.0 24.1 24.2 14.2% 4.0 2.1 0.0	16.0 24.8 124.0 72.9% 4.4 2.4 0.0 6.8	5.0 11.8 21.8 12.8% 4.4 2.4	16.0 24.8 145.8 85.8% 4.4 2.4			
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Mill-Red Time (s) Mill-Red Time (s) Motal Lost Time (s)	24.1 24.2 14.2% 4.0 2.1 0.0 6.1	24.1 24.2 14.2% 4.0 2.1 0.0	24.8 124.0 72.9% 4.4 2.4 0.0 6.8	11.8 21.8 12.8% 4.4 2.4	24.8 145.8 85.8% 4.4 2.4			
Ainimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio Ye Ratio Control Delay Queue Delay Total Delay Los Approach Delay Approach LOS Intersection Summary	24.1 24.2 14.2% 4.0 2.1 0.0 6.1	24.1 24.2 14.2% 4.0 2.1 0.0	24.8 124.0 72.9% 4.4 2.4 0.0 6.8	11.8 21.8 12.8% 4.4 2.4	24.8 145.8 85.8% 4.4 2.4			
Fotal Split (s) Fotal Split (%) Fotal Lost Time (s) Fotal Mode Fotal Mode Fotal Fotal Green (s) Fotal Control Delay Fotal Delay	24.2 14.2% 4.0 2.1 0.0 6.1	24.2 14.2% 4.0 2.1 0.0	124.0 72.9% 4.4 2.4 0.0 6.8	21.8 12.8% 4.4 2.4	145.8 85.8% 4.4 2.4			
Total Split (s) Total Split (%) Total Split (%) Total Split (%) Total Split (%) Total Lost Time (s) Total Coptimize? Total Mode Total Green (s) Total Coptimize Total Delay Total De	14.2% 4.0 2.1 0.0 6.1	14.2% 4.0 2.1 0.0	72.9% 4.4 2.4 0.0 6.8	12.8% 4.4 2.4	85.8% 4.4 2.4			
Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio York Ratio Control Delay Queue Delay Total Delay Approach Delay Approach LOS Intersection Summary	4.0 2.1 0.0 6.1 None	4.0 2.1 0.0	4.4 2.4 0.0 6.8	4.4 2.4	4.4 2.4			
Vellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio Volc Ratio Control Delay Queue Delay Total Delay Los Approach Delay Approach LOS Intersection Summary	4.0 2.1 0.0 6.1 None	4.0 2.1 0.0	4.4 2.4 0.0 6.8	4.4 2.4	4.4 2.4			
All-Red Time (s) Lost Time Adjust (s) Fotal Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio Control Delay Queue Delay Fotal Delay Los Approach Delay Approach LOS Intersection Summary	2.1 0.0 6.1 None	2.1 0.0	2.4 0.0 6.8	2.4	2.4			
Lost Time Adjust (s) Fotal Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effet Green (s) Actuated g/C Ratio Lord Ratio Control Delay Queue Delay Fotal Delay LOS Approach Delay Approach LOS Intersection Summary	0.0 6.1 None	0.0	0.0 6.8					
Fotal Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio Location Control Delay Queue Delay Fotal Delay LOS Approach Delay Approach LOS Intersection Summary	6.1 None		6.8		0.0			
Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio u/c Ratio Control Delay Queue Delay Fotal Delay LOS Approach Delay Approach LOS Intersection Summary	None			6.8	6.8			
Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio I/c Ratio Control Delay Queue Delay Fotal Delay LOS Approach Delay Approach LOS Intersection Summary			Lag	Lead				
Recall Mode Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Approach Delay Approach LOS Intersection Summary			Yes	Yes				
Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Intersection Summary		None	C-Max	None	C-Max			
Actuated g/C Ratio I/c Ratio Control Delay Queue Delay Fotal Delay LOS Approach Delay Approach LOS Intersection Summary	18.1	18.1	117.2	139.0	139.0			
n/c Ratio Control Delay Queue Delay Fotal Delay LOS Approach Delay Approach LOS Intersection Summary	0.11	0.11	0.69	0.82	0.82			
Control Delay Queue Delay Fotal Delay LOS Approach Delay Approach LOS Intersection Summary	1.18	0.71	0.72	1.45	0.22			
Queue Delay Fotal Delay LOS Approach Delay Approach LOS ntersection Summary	182.4	37.7	17.2	268.3	3.6			
Total Delay LOS Approach Delay Approach LOS Intersection Summary	0.0	0.0	0.0	0.0	0.0			
LOS Approach Delay Approach LOS ntersection Summary	182.4	37.7	17.2	268.3	3.6			
Approach Delay Approach LOS ntersection Summary	F	D	В	F	A			
Approach LOS ntersection Summary	111.7		17.2	•	68.2			
•	F		В		E			
Actuated Cycle Length: 170								
Offset: 87 (51%), Referenced to	o phase	2:SBTL	and 6:NB	T. Start o	of Yellow			
Natural Cycle: 100	- р			,				
Control Type: Actuated-Coordin	nated							
Maximum v/c Ratio: 1.45								
ntersection Signal Delay: 41.9				lı	ntersection LOS:	D		
ntersection Capacity Utilization)			CU Level of Servi			
Analysis Period (min) 15		,				·· -		
Splits and Phases: 101: NW	107th /	Avenue &	NW 19th	Street				
\	- **							≯ _{Ø4}
♥ Ø2 (R) 145.8 s								▼ Ø4 24.2 s
ÿ5								

	•	•	†	-	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	221	211	2468	289	895
v/c Ratio	1.18	0.71	0.72	1.45	0.22
Control Delay	182.4	37.7	17.2	268.3	3.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	182.4	37.7	17.2	268.3	3.6
Queue Length 50th (ft)	~292	70	566	~387	69
Queue Length 95th (ft)	#477	171	610	#590	79
Internal Link Dist (ft)	720		370		397
Turn Bay Length (ft)				150	
Base Capacity (vph)	188	298	3412	199	4157
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.18	0.71	0.72	1.45	0.22

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
 # 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

	•	4	<u></u>	/	/	
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	ተተኈ		ሻ	^
Traffic Volume (veh/h)	208	198	1828	492	272	841
Future Volume (veh/h)	208	198	1828	492	272	841
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	221	211	1945	523	289	895
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	190	169	2777	713	250	4175
Arrive On Green	0.11	0.11	0.69	0.69	0.09	0.82
	1781	1585	4197	1034	1781	5274
Sat Flow, veh/h						
Grp Volume(v), veh/h	221	211	1629	839	289	895
Grp Sat Flow(s), veh/h/ln	1781	1585	1702	1658	1781	1702
Q Serve(g_s), s	18.1	18.1	48.5	54.1	15.0	6.6
Cycle Q Clear(g_c), s	18.1	18.1	48.5	54.1	15.0	6.6
Prop In Lane	1.00	1.00		0.62	1.00	
Lane Grp Cap(c), veh/h	190	169	2347	1143	250	4175
V/C Ratio(X)	1.17	1.25	0.69	0.73	1.16	0.21
Avail Cap(c_a), veh/h	190	169	2347	1143	250	4175
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	75.9	76.0	15.7	16.6	55.1	3.4
Incr Delay (d2), s/veh	116.9	152.1	1.7	4.2	105.9	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	14.5	22.2	19.0	21.4	18.3	2.1
Unsig. Movement Delay, s/vel						
LnGrp Delay(d),s/veh	192.9	228.0	17.4	20.8	161.0	3.5
LnGrp LOS	F	F	В	C	F	A
Approach Vol, veh/h	432		2468		<u>'</u>	1184
Approach Delay, s/veh	210.1		18.6			42.0
	Z10.1		10.0 B			42.0 D
Approach LOS	Г		D			U
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		145.8		24.2	21.8	124.0
Change Period (Y+Rc), s		6.8		6.1	6.8	6.8
Max Green Setting (Gmax), s		139.0		18.1	15.0	117.2
Max Q Clear Time (g_c+l1), s		8.6		20.1	17.0	56.1
Green Ext Time (p_c), s		6.4		0.0	0.0	33.8
Intersection Summary						
HCM 6th Ctrl Delay			45.6			
HCM 6th LOS			D			

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†		ሻ	†			4			4	
Traffic Vol, veh/h	33	601	12	48	366	7	17	3	69	3	0	1
Future Vol, veh/h	33	601	12	48	366	7	17	3	69	3	0	1
Conflicting Peds, #/hr	0	0	2	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	125	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	_	-	0	_	_	1	-	_	1	_
Grade, %	, -	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	82	82	82	82	82	82	82	82	82	82	82	82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	40	733	15	59	446	9	21	4	84	4	0	1
Major/Minor	Anic 1			/ois=0			line 1			/incr0		
	Major1			Major2			Minor1	4000		Minor2	4000	000
Conflicting Flow All	455	0	0	750	0	0	1164	1396	376	1018	1399	228
Stage 1	-	-	-	-	-	-	823	823	-	569	569	-
Stage 2	-	-	<u>-</u>	-	-	-	341	573	- 4 F	449	830	-
Critical Hdwy	4.14	-	-	4.14	-	-	5	5	4.5	5	5	4.5
Critical Hdwy Stg 1	-	-	-	-	-	-	5	5	-	5	5	-
Critical Hdwy Stg 2	2 22	-	-	2 22	-	-	5	5	-	5	5	-
Follow-up Hdwy	2.22	-	-	2.22	-	-	3	3	3	3	3	3 991
Pot Cap-1 Maneuver	1102	-	-	855	-	-	372 529	292 529	874	433 684	291 684	
Stage 1	-	-	-	-	-	-	859	681	-	771	525	-
Stage 2	-	-	-	-	-	-	039	001	-	771	525	-
Platoon blocked, %	1102	-	-	853	-	-	335	255	872	350	254	991
Mov Cap-1 Maneuver Mov Cap-2 Maneuver			-	033	-	-	412	361	0/2	440	343	991
Stage 1	-	-	-	-	-	-	495	495	-	642	637	-
Stage 1 Stage 2	_	-	-	-	-	_	799	634	-	649	491	-
Slaye 2	-	-	-	-	-	-	133	034	-	049	431	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			1.1			11.2			12.1		
HCM LOS							В			В		
Minor Lane/Major Mvm	t 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBI n1			
Capacity (veh/h)			1102	-	LDIX	853	-	-	511			
HCM Lane V/C Ratio			0.037	_		0.069	_	_	0.01			
HCM Control Delay (s)		11.2	8.4	_		9.5	_	_	12.1			
HCM Lane LOS		11.2 B	Α	_	_	9.5 A	_	<u> </u>	12.1 B			
HCM 95th %tile Q(veh)		0.6	0.1	_	_	0.2			0			
HOW JOHN JUNE Q(VEII)		0.0	J. 1			0.2						

Intersection						
Int Delay, s/veh	0.3					
	EBT	EBR	WBL	WBT	NBL	NBR
		LDK	VVDL		INDL	
Lane Configurations Traffic Vol, veh/h	↑1 → 625	3	0	↑↑ 425	0	7 35
Future Vol, veh/h	625	3	0	425	0	35
·	025	0	0			
Conflicting Peds, #/hr				0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	735	4	0	500	0	41
Major/Minor Ma	ajor1		Major2		/linor1	
						070
Conflicting Flow All	0	0	-	-	-	370
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	4.5
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3
Pot Cap-1 Maneuver	-	-	0	-	0	878
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	878
Mov Cap-2 Maneuver	-	-	_	-	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Olage 2						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.3	
HCM LOS					Α	
Minor Lane/Major Mvmt	ı	NBLn1	EBT	EBR	WBT	
	- 1		LDI	LDK	VVDI	
Capacity (veh/h)		878	-	-	-	
HCM Lane V/C Ratio		0.047	-	-	-	
HCM Control Delay (s)		9.3	-	-	-	
HCM Lane LOS		Α	-	-	-	
HCM 95th %tile Q(veh)		0.1	-	-	-	

Intersection												
Intersection Delay, s/veh	45.3											
Intersection LOS	Е											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		*	↑ ↑		7	1		*	1€	
Traffic Vol, veh/h	298	330	46	7	283	284	9	13	3	201	24	132
Future Vol, veh/h	298	330	46	7	283	284	9	13	3	201	24	132
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	359	398	55	8	341	342	11	16	4	242	29	159
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	36.3			69			14.8			26.2		
HCM LOS	Е			F			В			D		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	
Lane Vol Left, %		NBLn1 100%	NBLn2	EBLn1 100%	EBLn2	EBLn3	WBLn1 100%	WBLn2	WBLn3	SBLn1 100%	SBLn2	
Vol Left, %		100%	0%	100%	0%	0%	100%	0%	0%	100%	0%	
Vol Left, % Vol Thru, %		100% 0%	0% 81%	100% 0%	0% 100%	0% 71%	100% 0%	0% 100%	0% 25%	100% 0%	0% 15%	
Vol Left, % Vol Thru, % Vol Right, %		100% 0% 0%	0% 81% 19%	100% 0% 0%	0% 100% 0%	0% 71% 29%	100% 0% 0%	0% 100% 0%	0% 25% 75%	100% 0% 0%	0% 15% 85%	
Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 81% 19% Stop 16	100% 0% 0% Stop	0% 100% 0% Stop	0% 71% 29% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 25% 75% Stop	100% 0% 0% Stop	0% 15% 85% Stop	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 9	0% 81% 19% Stop 16 0	100% 0% 0% Stop 298	0% 100% 0% Stop 220	0% 71% 29% Stop 156 0 110	100% 0% 0% Stop 7	0% 100% 0% Stop 189	0% 25% 75% Stop 378	100% 0% 0% Stop 201	0% 15% 85% Stop 156 0	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 9 9	0% 81% 19% Stop 16 0 13	100% 0% 0% Stop 298 298	0% 100% 0% Stop 220 0 220	0% 71% 29% Stop 156 0 110 46	100% 0% 0% Stop 7	0% 100% 0% Stop 189 0 189	0% 25% 75% Stop 378 0	100% 0% 0% Stop 201 201	0% 15% 85% Stop 156 0 24 132	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 9 0 0	0% 81% 19% Stop 16 0 13 3	100% 0% 0% Stop 298 298 0 0	0% 100% 0% Stop 220 0 220 0	0% 71% 29% Stop 156 0 110 46 188	100% 0% 0% Stop 7 7 0 0	0% 100% 0% Stop 189 0 189 0	0% 25% 75% Stop 378 0 94 284 456	100% 0% 0% Stop 201 201 0	0% 15% 85% Stop 156 0 24 132	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 9 0 0	0% 81% 19% Stop 16 0 13 3 19	100% 0% 0% Stop 298 298 0 0 359	0% 100% 0% Stop 220 0 220 0 265 6	0% 71% 29% Stop 156 0 110 46 188	100% 0% 0% Stop 7 7 0 0	0% 100% 0% Stop 189 0 189 0 227	0% 25% 75% Stop 378 0 94 284 456	100% 0% 0% Stop 201 201 0 0 242	0% 15% 85% Stop 156 0 24 132 188	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 9 0 0 11 6 0.035	0% 81% 19% Stop 16 0 13 3 19 6	100% 0% 0% Stop 298 298 0 0 359 6	0% 100% 0% Stop 220 0 220 0 265 6 0.626	0% 71% 29% Stop 156 0 110 46 188 6 0.433	100% 0% 0% Stop 7 7 0 0 8 6	0% 100% 0% Stop 189 0 189 0 227 6 0.568	0% 25% 75% Stop 378 0 94 284 456 6	100% 0% 0% Stop 201 201 0 0 242 6	0% 15% 85% Stop 156 0 24 132 188 6	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 9 0 0	0% 81% 19% Stop 16 0 13 3 19	100% 0% 0% Stop 298 298 0 0 359	0% 100% 0% Stop 220 0 220 0 265 6	0% 71% 29% Stop 156 0 110 46 188	100% 0% 0% Stop 7 7 0 0	0% 100% 0% Stop 189 0 189 0 227	0% 25% 75% Stop 378 0 94 284 456	100% 0% 0% Stop 201 201 0 0 242	0% 15% 85% Stop 156 0 24 132 188	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 9 0 0 11 6 0.035 11.934 Yes	0% 81% 19% Stop 16 0 13 3 19 6 0.059 11.283 Yes	100% 0% 0% Stop 298 298 0 0 359 6 0.898 9.276 Yes	0% 100% 0% Stop 220 0 220 0 265 6 0.626 8.761 Yes	0% 71% 29% Stop 156 0 110 46 188 6 0.433 8.548 Yes	100% 0% 0% Stop 7 7 0 0 8 6 0.022 9.503 Yes	0% 100% 0% Stop 189 0 189 0 227 6 0.568 8.988 Yes	0% 25% 75% Stop 378 0 94 284 456 6 1.07 8.447 Yes	100% 0% 0% Stop 201 201 0 0 242 6 0.67 10.213 Yes	0% 15% 85% Stop 156 0 24 132 188 6 0.464 9.105 Yes	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		100% 0% 0% Stop 9 0 0 11 6 0.035 11.934 Yes 302	0% 81% 19% Stop 16 0 13 3 19 6 0.059 11.283 Yes 319	100% 0% 0% Stop 298 298 0 0 359 6 0.898 9.276 Yes 395	0% 100% 0% Stop 220 0 220 0 265 6 0.626 8.761 Yes 416	0% 71% 29% Stop 156 0 110 46 188 6 0.433 8.548 Yes 425	100% 0% 0% Stop 7 7 0 0 8 6 0.022 9.503 Yes 375	0% 100% 0% Stop 189 0 189 0 227 6 0.568 8.988 Yes 400	0% 25% 75% Stop 378 0 94 284 456 6 1.07 8.447 Yes 428	100% 0% 0% Stop 201 201 0 0 242 6 0.67 10.213 Yes 356	0% 15% 85% Stop 156 0 24 132 188 6 0.464 9.105 Yes 398	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		100% 0% 0% Stop 9 0 0 11 6 0.035 11.934 Yes 302 9.634	0% 81% 19% Stop 16 0 13 3 19 6 0.059 11.283 Yes 319 8.983	100% 0% 0% Stop 298 298 0 0 359 6 0.898 9.276 Yes 395 6.976	0% 100% 0% Stop 220 0 220 0 265 6 0.626 8.761 Yes 416 6.461	0% 71% 29% Stop 156 0 110 46 188 6 0.433 8.548 Yes 425 6.248	100% 0% 0% Stop 7 7 0 0 8 6 0.022 9.503 Yes 375 7.296	0% 100% 0% Stop 189 0 189 0 227 6 0.568 8.988 Yes 400 6.781	0% 25% 75% Stop 378 0 94 284 456 6 1.07 8.447 Yes 428 6.24	100% 0% 0% Stop 201 201 0 0 242 6 0.67 10.213 Yes 356 7.913	0% 15% 85% Stop 156 0 24 132 188 6 0.464 9.105 Yes 398 6.805	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 9 0 0 11 6 0.035 11.934 Yes 302 9.634 0.036	0% 81% 19% Stop 16 0 13 3 19 6 0.059 11.283 Yes 319 8.983 0.06	100% 0% 0% Stop 298 298 0 0 359 6 0.898 9.276 Yes 395 6.976 0.909	0% 100% 0% Stop 220 0 220 0 265 6 0.626 8.761 Yes 416 6.461 0.637	0% 71% 29% Stop 156 0 110 46 188 6 0.433 8.548 Yes 425 6.248 0.442	100% 0% 0% Stop 7 7 0 0 8 6 0.022 9.503 Yes 375 7.296 0.021	0% 100% 0% Stop 189 0 189 0 227 6 0.568 8.988 Yes 400 6.781 0.568	0% 25% 75% Stop 378 0 94 284 456 6 1.07 8.447 Yes 428 6.24 1.065	100% 0% 0% Stop 201 201 0 0 242 6 0.67 10.213 Yes 356 7.913 0.68	0% 15% 85% Stop 156 0 24 132 188 6 0.464 9.105 Yes 398 6.805 0.472	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		100% 0% 0% Stop 9 0 0 11 6 0.035 11.934 Yes 302 9.634 0.036 15.1	0% 81% 19% Stop 16 0 13 3 19 6 0.059 11.283 Yes 319 8.983 0.06 14.7	100% 0% 0% Stop 298 298 0 0 359 6 0.898 9.276 Yes 395 6.976	0% 100% 0% Stop 220 0 220 0 265 6 0.626 8.761 Yes 416 6.461 0.637 25	0% 71% 29% Stop 156 0 110 46 188 6 0.433 8.548 Yes 425 6.248 0.442 17.6	100% 0% 0% Stop 7 7 0 0 8 6 0.022 9.503 Yes 375 7.296	0% 100% 0% Stop 189 0 189 0 227 6 0.568 8.988 Yes 400 6.781 0.568 23.1	0% 25% 75% Stop 378 0 94 284 456 6 1.07 8.447 Yes 428 6.24 1.065 93	100% 0% 0% Stop 201 201 0 0 242 6 0.67 10.213 Yes 356 7.913 0.68 31.4	0% 15% 85% Stop 156 0 24 132 188 6 0.464 9.105 Yes 398 6.805 0.472 19.4	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 9 0 0 11 6 0.035 11.934 Yes 302 9.634 0.036	0% 81% 19% Stop 16 0 13 3 19 6 0.059 11.283 Yes 319 8.983 0.06	100% 0% 0% Stop 298 298 0 0 359 6 0.898 9.276 Yes 395 6.976 0.909	0% 100% 0% Stop 220 0 220 0 265 6 0.626 8.761 Yes 416 6.461 0.637	0% 71% 29% Stop 156 0 110 46 188 6 0.433 8.548 Yes 425 6.248 0.442	100% 0% 0% Stop 7 7 0 0 8 6 0.022 9.503 Yes 375 7.296 0.021	0% 100% 0% Stop 189 0 189 0 227 6 0.568 8.988 Yes 400 6.781 0.568	0% 25% 75% Stop 378 0 94 284 456 6 1.07 8.447 Yes 428 6.24 1.065	100% 0% 0% Stop 201 201 0 0 242 6 0.67 10.213 Yes 356 7.913 0.68	0% 15% 85% Stop 156 0 24 132 188 6 0.464 9.105 Yes 398 6.805 0.472	

	٠	*	1	1	ļ		
Lane Group	EBL	EBR	NBL	NBT	SBT		
Lane Configurations	ሻ	7	ሻ	^	↑ ↑		
Traffic Volume (vph)	194	313	478	1163	521		
Future Volume (vph)	194	313	478	1163	521		
Turn Type	Prot	pm+ov	pm+pt	NA	NA		
Protected Phases	8	1	1	6	2		
Permitted Phases		8	6				
Detector Phase	8	1	1	6	2		
Switch Phase							
Minimum Initial (s)	7.0	5.0	5.0	16.0	16.0		
Minimum Split (s)	15.0	11.4	11.4	24.4	24.4		
Total Split (s)	21.0	21.4	21.4	88.0	66.4		
Total Split (%)	19.3%	19.6%	19.6%	80.7%	60.9%		
Yellow Time (s)	4.0	4.4	4.4	4.4	4.4		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.4	6.4	6.4	6.4		
Lead/Lag		Lead	Lead		Lag		
Lead-Lag Optimize?		Yes	Yes		Yes		
Recall Mode	None	None	None	C-Max	C-Max		
Act Effct Green (s)	14.5	34.8	82.1	82.1	61.4		
Actuated g/C Ratio	0.13	0.32	0.75	0.75	0.56		
v/c Ratio	0.87	0.46	0.85	0.46	0.37		
Control Delay	79.9	6.8	21.1	5.8	12.8		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	79.9	6.8	21.1	5.8	12.8		
LOS	Е	Α	С	Α	В		
Approach Delay	34.8			10.2	12.8		
Approach LOS	С			В	В		
Intersection Summary					<u> </u>		
Cycle Length: 109							
Actuated Cycle Length: 109							
Offset: 0 (0%), Referenced	to phase 2	:SBT and	6:NBTL,	Start of Y	ellow		
Natural Cycle: 65							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.87							
Intersection Signal Delay: 1	5.2			lr	ntersection	LOS: B	
Intersection Capacity Utiliza	ation 72.4%)		[(CU Level o	f Service C	
Analysis Period (min) 15							
Splits and Phases: 105:	NW 97th Av	venue & N	IW 17th S	Street			
3 Ø1	₩ Ø2 (F	2)					
21.4s	66.4s	V					
(n)							
Ø6 (R)							

	۶	•	4	†	ļ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	204	329	503	1224	715
v/c Ratio	0.87	0.46	0.85	0.46	0.37
Control Delay	79.9	6.8	21.1	5.8	12.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	79.9	6.8	21.1	5.8	12.8
Queue Length 50th (ft)	141	14	105	146	128
Queue Length 95th (ft)	#267	81	#196	181	168
Internal Link Dist (ft)	997			269	190
Turn Bay Length (ft)			100		
Base Capacity (vph)	243	717	598	2666	1941
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.84	0.46	0.84	0.46	0.37
Intersection Summary					

⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	*	4	1	Ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	7	7	7	^	†		
Traffic Volume (veh/h)	194	313	478	1163	521	159	
Future Volume (veh/h)	194	313	478	1163	521	159	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.97	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	204	329	503	1224	548	167	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	245	430	628	2660	1483	450	
Arrive On Green	0.14	0.14	0.13	0.75	0.56	0.56	
Sat Flow, veh/h	1781	1585	1781	3647	2760	809	
Grp Volume(v), veh/h	204	329	503	1224	364	351	
Grp Sat Flow(s), veh/h/ln	1781	1585	1781	1777	1777	1699	
Q Serve(g_s), s	12.2	15.0	12.5	14.4	12.5	12.6	
Cycle Q Clear(g_c), s	12.2	15.0	12.5	14.4	12.5	12.6	
Prop In Lane	1.00	1.00	1.00		12.0	0.48	
ane Grp Cap(c), veh/h	245	430	628	2660	988	945	
V/C Ratio(X)	0.83	0.76	0.80	0.46	0.37	0.37	
Avail Cap(c_a), veh/h	245	430	635	2660	988	945	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	45.8	36.5	9.5	5.3	13.5	13.5	
ncr Delay (d2), s/veh	20.6	7.7	6.6	0.6	1.1	1.1	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	6.7	8.9	5.3	4.6	5.1	4.9	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d),s/veh	66.3	44.2	16.1	5.8	14.6	14.6	
_nGrp LOS	E	D	В	Α	В	В	
Approach Vol, veh/h	533			1727	715		
Approach Delay, s/veh	52.7			8.8	14.6		
Approach LOS	D			A	В		
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	21.0	67.0				88.0	21.0
Change Period (Y+Rc), s	6.4	6.4				6.4	6.0
Max Green Setting (Gmax), s	15.0	60.0				81.6	15.0
Max Q Clear Time (g_c+l1), s	14.5	14.6				16.4	17.0
Green Ext Time (p_c), s	0.1	1.7				4.1	0.0
Intersection Summary							
HCM 6th Ctrl Delay			18.1				
HCM 6th LOS			В				

	•	•	†	>	↓	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	ሻ	7	ተተኈ	ሻ	ተተተ	
Traffic Volume (vph)	215	202	1828	277	841	
uture Volume (vph)	215	202	1828	277	841	
Turn Type	Prot	Prot	NA	pm+pt	NA	
Protected Phases	4	4	6	5	2	
Permitted Phases		4		2		
Detector Phase	4	4	6	5	2	
Switch Phase						
Minimum Initial (s)	7.0	7.0	16.0	5.0	16.0	
Minimum Split (s)	24.1	24.1	24.8	11.8	24.8	
Total Split (s)	24.2	24.2	124.0	21.8	145.8	
Total Split (%)	14.2%	14.2%	72.9%	12.8%	85.8%	
Yellow Time (s)	4.0	4.0	4.4	4.4	4.4	
All-Red Time (s)	2.1	2.1	2.4	2.4	2.4	
₋ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	6.1	6.8	6.8	6.8	
_ead/Lag			Lag	Lead		
_ead-Lag Optimize?			Yes	Yes		
Recall Mode	None	None	C-Max	None	C-Max	
Act Effct Green (s)	18.1	18.1	117.2	139.0	139.0	
Actuated g/C Ratio	0.11	0.11	0.69	0.82	0.82	
ı/c Ratio	1.22	0.72	0.73	1.48	0.22	
Control Delay	195.8	39.1	17.2	280.3	3.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	195.8	39.1	17.2	280.3	3.6	
LOS	F	D	В	F	Α	
Approach Delay	119.9		17.2		72.2	
Approach LOS	F		В		Е	
ntersection Summary						
Cycle Length: 170						
Actuated Cycle Length: 170						
Offset: 87 (51%), Reference	ed to phase	2:SBTL	and 6:NB	T, Start c	of Yellow	
Natural Cycle: 100						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 1.48						
ntersection Signal Delay: 4					ntersection	
ntersection Capacity Utiliza	ation 90.2%)		[(CU Level c	of Service E
Analysis Period (min) 15						
Splits and Phases: 101:	NW 107th <i>A</i>	Avenue &	NW 19th	Street		
Ø2 (R)						▼ Ø4
145.8 s						24.2 s
↑ ø5 ↑ ø6	(R)					

Future AM Peak Hour Synchro 11 Light Report

	•	•	†	-	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	229	215	2477	295	895
v/c Ratio	1.22	0.72	0.73	1.48	0.22
Control Delay	195.8	39.1	17.2	280.3	3.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	195.8	39.1	17.2	280.3	3.6
Queue Length 50th (ft)	~311	75	570	~401	69
Queue Length 95th (ft)	#498	177	615	#606	79
Internal Link Dist (ft)	720		370		397
Turn Bay Length (ft)				150	
Base Capacity (vph)	188	298	3413	199	4157
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.22	0.72	0.73	1.48	0.22

Intersection Summary

Future AM Peak Hour Synchro 11 Light Report

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	4	<u>†</u>	<u> </u>	/	
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	ተተ _ጉ		ሻ	^
Traffic Volume (veh/h)	215	202	1828	500	277	841
Future Volume (veh/h)	215	202	1828	500	277	841
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	229	215	1945	532	295	895
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	190	169	2767	721	249	4175
Arrive On Green	0.11	0.11	0.69	0.69	0.09	0.82
Sat Flow, veh/h	1781	1585	4182	1046	1781	5274
Grp Volume(v), veh/h	229	215	1635	842	295	895
Grp Sat Flow(s),veh/h/ln	1781	1585	1702	1656	1781	1702
Q Serve(g_s), s	18.1	18.1	48.8	54.7	15.0	6.6
Cycle Q Clear(g_c), s	18.1	18.1	48.8	54.7	15.0	6.6
Prop In Lane	1.00	1.00	00.47	0.63	1.00	4475
Lane Grp Cap(c), veh/h	190	169	2347	1141	249	4175
V/C Ratio(X)	1.21	1.27	0.70	0.74	1.19	0.21
Avail Cap(c_a), veh/h	190	169	2347	1141	249	4175
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	75.9	76.0	15.8	16.7	55.3	3.4
Incr Delay (d2), s/veh	132.3	161.2	1.7	4.3	116.4	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	15.3	22.6	19.1	21.6	19.0	2.1
Unsig. Movement Delay, s/vel	n					
LnGrp Delay(d),s/veh	208.3	237.2	17.5	21.0	171.7	3.5
LnGrp LOS	F	F	В	С	F	Α
Approach Vol, veh/h	444		2477			1190
Approach Delay, s/veh	222.3		18.7			45.2
Approach LOS	F		В			D
	'		U			
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		145.8		24.2	21.8	124.0
Change Period (Y+Rc), s		6.8		6.1	6.8	6.8
Max Green Setting (Gmax), s		139.0		18.1	15.0	117.2
Max Q Clear Time (g_c+I1), s		8.6		20.1	17.0	56.7
Green Ext Time (p_c), s		6.4		0.0	0.0	33.8
.,						
Intersection Summary			10.1			
HCM 6th Ctrl Delay			48.4			
HCM 6th LOS			D			

Future AM Peak Hour Synchro 11 Light Report

	•	•	†	1	↓		
Lane Group	WBL	WBR	NBT	SBL	SBT		
Lane Configurations	7	7	ተተቡ	ħ	ተተተ		
Traffic Volume (vph)	215	202	1828	277	841		
Future Volume (vph)	215	202	1828	277	841		
Turn Type	Prot	pt+ov	NA	pm+pt	NA		
Protected Phases	4	4 5	6	5	2		
Permitted Phases				2			
Detector Phase	4	4 5	6	5	2		
Switch Phase							
Minimum Initial (s)	7.0		16.0	5.0	16.0		
Minimum Split (s)	24.2		24.8	11.8	24.8		
Total Split (s)	34.4		98.6	37.0	135.6		
Total Split (%)	20.2%		58.0%	21.8%	79.8%		
Yellow Time (s)	4.0		4.4	4.4	4.4		
All-Red Time (s)	2.1		2.4	2.4	2.4		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.1		6.8	6.8	6.8		
Lead/Lag			Lag	Lead			
Lead-Lag Optimize?			Yes	Yes			
Recall Mode	None		C-Max	None	C-Max		
Act Effct Green (s)	25.6	58.9	98.2	131.5	131.5		
Actuated g/C Ratio	0.15	0.35	0.58	0.77	0.77		
v/c Ratio	0.86	0.39	0.87	0.92	0.23		
Control Delay (s/veh)	98.9	41.3	34.8	88.3	5.6		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay (s/veh)	98.9	41.3	34.8	88.3	5.6		
LOS	F	D	С	F	Α		
Approach Delay (s/veh)	71.0		34.8		26.1		
Approach LOS	Е		С		С		
Intersection Summary							
Cycle Length: 170							
Actuated Cycle Length:	170						
Offset: 87 (51%), Refere		phase	2:SBTI	_ and 6:	NBT. Sta	art of Yellow	
Natural Cycle: 100		•			,		
Control Type: Actuated-	Coordin	ated					
Maximum v/c Ratio: 0.9							
Intersection Signal Dela		1): 36.2			ntersect	ion LOS: D	
Intersection Capacity U						el of Service E	
A				•		· · · ·	

Analysis Period (min) 15

	•	*	†	1	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	229	215	2477	295	895
v/c Ratio	0.86	0.39	0.87	0.92	0.23
Control Delay (s/veh)	98.9	41.3	34.8	88.3	5.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	98.9	41.3	34.8	88.3	5.6
Queue Length 50th (ft)	249	167	872	272	95
Queue Length 95th (ft)	#375	239	965	#425	112
Internal Link Dist (ft)	917		370		397
Turn Bay Length (ft)				150	
Base Capacity (vph)	294	573	2856	356	3934
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.78	0.38	0.87	0.83	0.23
Intersection Summary					

⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	4	†	~	-	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	ተተጉ		*	^
Traffic Volume (veh/h)	215	202	1828	500	277	841
Future Volume (veh/h)	215	202	1828	500	277	841
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach			No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	229	215	1945	532	295	895
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	254	445	2421	631	315	3992
Arrive On Green	0.14	0.14	0.60	0.60	0.14	0.78
Sat Flow, veh/h	1781	1585	4182	1046	1781	5274
Grp Volume(v), veh/h	229	215	1635	842	295	895
Grp Sat Flow(s), veh/h/ln		1585	1702	1655	1781	1702
. ,	21.5	19.2	62.3	69.8	21.3	7.9
Q Serve(g_s), s	21.5				21.3	
Cycle Q Clear(g_c), s		19.2	62.3	69.8		7.9
Prop In Lane	1.00	1.00	2054	0.63	1.00	2000
Lane Grp Cap(c), veh/h	254	445	2054	999	315	3992
V/C Ratio(X)	0.90	0.48	0.80	0.84	0.94	0.22
Avail Cap(c_a), veh/h	297	483	2054	999	385	3992
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		50.9	25.7	27.2	58.7	4.9
Incr Delay (d2), s/veh	26.5	8.0	3.3	8.6	25.5	0.1
Initial Q Delay(d3), s/veh		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		17.5	25.9	29.6	15.0	2.7
Unsig. Movement Delay,	s/veh					
LnGrp Delay(d), s/veh	98.2	51.7	29.0	35.9	84.2	5.0
LnGrp LOS	F	D	С	D	F	Α
Approach Vol, veh/h	444		2477			1190
Approach Delay, s/veh	75.7		31.4			24.7
Approach LOS	Е		С			С
•		2		4		
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc),		139.7		30.3	30.3	109.4
Change Period (Y+Rc), s		6.8		6.1	6.8	6.8
Max Green Setting (Gma	, .	128.8		28.3	30.2	91.8
Max Q Clear Time (g_c+	l1), s	9.9		23.5	23.3	71.8
Green Ext Time (p_c), s		6.4		0.7	0.3	15.8
Intersection Summary						
HCM 6th Ctrl Delay, s/ve	h		34.2			
HCM 6th LOS			С			

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†		*	†			4			4	
Traffic Vol, veh/h	33	614	12	66	377	7	17	3	69	3	0	1
Future Vol, veh/h	33	614	12	66	377	7	17	3	69	3	0	1
Conflicting Peds, #/hr	0	0	2	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	- -	None
Storage Length	_	_	-	125	_	-	_	_	-	_	_	-
Veh in Median Storage,		0	_	-	0	_	_	1	_	_	1	_
Grade, %	π -	0	<u>-</u>	_	0	<u>-</u>	_	0	<u>-</u>	_	0	<u>-</u>
Peak Hour Factor	82	82	82	82	82	82	82	82	82	82	82	82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	40	749	15	80	460	9	21	4	84	4	0	1
		140	- 10	- 00	100		~ 1	-	07	7	J	
Major/Minor	la:a::4		_	4-10			Almen 4			Min = =0		
	lajor1			Major2			Minor1	4400		Minor2	4.4-7	005
Conflicting Flow All	469	0	0	766	0	0	1229	1468	384	1082	1471	235
Stage 1	-	-	-	-	-	-	839	839	-	625	625	-
Stage 2	-	-	-	-	-	-	390	629	-	457	846	-
Critical Hdwy	4.14	-	-	4.14	-	-	5	5	4.5	5	5	4.5
Critical Hdwy Stg 1	-	-	-	-	-	-	5	5	-	5	5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5	5	-	5	5	-
Follow-up Hdwy	2.22	-	-	2.22	-	-	3	3	3	3	3	3
Pot Cap-1 Maneuver	1089	-	-	843	-	-	348	271	868	405	270	985
Stage 1	-	-	-	-	-	-	520	520	-	646	646	-
Stage 2	-	-	-	-	-	-	818	644	-	765	516	-
Platoon blocked, %	1000	-	-	• • • •	-	-	000	000	000	000	000	00-
Mov Cap-1 Maneuver	1089	-	-	841	-	-	306	229	866	320	228	985
Mov Cap-2 Maneuver	-	-	-	-	-	-	392	338	-	412	315	-
Stage 1	-	-	-	-	-	-	486	486	-	605	585	-
Stage 2	-	-	-	-	-	-	739	583	-	642	482	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			1.4			11.4			12.5		
HCM LOS							В			В		
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SRI n1			
Capacity (veh/h)		675	1089	LUI	LDIX	841	VVDI	יוטויי	482			
HCM Lane V/C Ratio		0.161		-		0.096	-	-	0.01			
HCM Control Delay (s)		11.4	8.4	-	<u>-</u>	9.7	-	-	12.5			
HCM Lane LOS		11. 4 B	0.4 A	-	-	9.7 A	-	-	12.5 B			
HCM 95th %tile Q(veh)		0.6	0.1	-	-	0.3	-	-	0			
HOW JOHN JOHN Q(VEH)		0.0	U. I	-	_	0.5	_	_	U			

Future AM Peak Hour Synchro 11 Light Report

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	\//DI	WBT	NBL	NBR
		EBK	WBL		INDL	
Lane Configurations	↑ ↑	2.4		^	. 0	7
Traffic Vol, veh/h	625	34	0	443	0	41
Future Vol, veh/h	625	34	0	443	0	41
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	735	40	0	521	0	48
Major/Minor NA	oior1		/oicr2		lines1	
	ajor1		/lajor2		/linor1	200
Conflicting Flow All	0	0	-	-	-	388
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	4.5
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3
Pot Cap-1 Maneuver	-	-	0	-	0	865
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	865
Mov Cap-2 Maneuver	_	-	-	-	-	-
Stage 1	_	-	_	_	_	_
Stage 2	_	_	_	_	_	_
Olago Z						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.4	
HCM LOS					Α	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBT	
			LDI	LDK	VVDI	
Capacity (veh/h)		865	-	-	-	
HCM Lane V/C Ratio		0.056	-	-	-	
HCM Control Delay (s)		9.4	-	-	-	
HCM Lane LOS		Α	-	-	-	
HCM 95th %tile Q(veh)		0.2	-	-	-	

Future AM Peak Hour Synchro 11 Light Report

Intersection												
Intersection Delay, s/veh	50.4											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		ሻ	∱ }		*	1		*	₽	
Traffic Vol, veh/h	312	341	46	7	297	284	9	13	3	201	24	136
Future Vol, veh/h	312	341	46	7	297	284	9	13	3	201	24	136
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	376	411	55	8	358	342	11	16	4	242	29	164
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	41.6			76.5			15			27.3		
HCM LOS	Е			F			В			D		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	
Vol Left, %		NBLn1 100%	NBLn2 0%	EBLn1 100%	EBLn2 0%	EBLn3	WBLn1 100%	WBLn2 0%	WBLn3	SBLn1 100%	SBLn2 0%	
Vol Left, %		100%	0%	100%	0%	0%	100%	0%	0%	100%	0%	
Vol Left, % Vol Thru, %		100% 0%	0% 81%	100% 0%	0% 100%	0% 71%	100% 0%	0% 100%	0% 26%	100% 0%	0% 15%	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 9	0% 81% 19% Stop 16	100% 0% 0% Stop 312	0% 100% 0%	0% 71% 29%	100% 0% 0% Stop 7	0% 100% 0%	0% 26% 74% Stop 383	100% 0% 0% Stop 201	0% 15% 85% Stop 160	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 9	0% 81% 19% Stop 16	100% 0% 0% Stop 312 312	0% 100% 0% Stop 227	0% 71% 29% Stop 160 0	100% 0% 0% Stop 7	0% 100% 0% Stop 198	0% 26% 74% Stop 383 0	100% 0% 0% Stop 201 201	0% 15% 85% Stop 160	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 9 9	0% 81% 19% Stop 16 0	100% 0% 0% Stop 312 312 0	0% 100% 0% Stop 227 0 227	0% 71% 29% Stop 160 0	100% 0% 0% Stop 7 7	0% 100% 0% Stop 198 0	0% 26% 74% Stop 383 0	100% 0% 0% Stop 201 201 0	0% 15% 85% Stop 160 0	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 9 9	0% 81% 19% Stop 16 0 13	100% 0% 0% Stop 312 312 0	0% 100% 0% Stop 227 0 227	0% 71% 29% Stop 160 0 114 46	100% 0% 0% Stop 7 7 0	0% 100% 0% Stop 198 0 198	0% 26% 74% Stop 383 0 99 284	100% 0% 0% Stop 201 201 0	0% 15% 85% Stop 160 0 24 136	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 9 0 0	0% 81% 19% Stop 16 0 13 3	100% 0% 0% Stop 312 312 0 0	0% 100% 0% Stop 227 0 227 0 274	0% 71% 29% Stop 160 0 114 46 192	100% 0% 0% Stop 7 7 0 0	0% 100% 0% Stop 198 0 198 0	0% 26% 74% Stop 383 0 99 284 461	100% 0% 0% Stop 201 201 0 0	0% 15% 85% Stop 160 0 24 136 193	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 9 0 0	0% 81% 19% Stop 16 0 13 3 19	100% 0% 0% Stop 312 312 0 0 376	0% 100% 0% Stop 227 0 227 0 274	0% 71% 29% Stop 160 0 114 46 192	100% 0% 0% Stop 7 7 0 0	0% 100% 0% Stop 198 0 198 0 239	0% 26% 74% Stop 383 0 99 284 461	100% 0% 0% Stop 201 201 0 0 242	0% 15% 85% Stop 160 0 24 136 193	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 9 0 0 11 6 0.036	0% 81% 19% Stop 16 0 13 3 19 6	100% 0% 0% Stop 312 312 0 0 376 6	0% 100% 0% Stop 227 0 227 0 274 6 0.652	0% 71% 29% Stop 160 0 114 46 192 6 0.447	100% 0% 0% Stop 7 7 0 0 8 6	0% 100% 0% Stop 198 0 198 0 239 6 0.606	0% 26% 74% Stop 383 0 99 284 461 6	100% 0% 0% Stop 201 201 0 0 242 6	0% 15% 85% Stop 160 0 24 136 193 6	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		100% 0% 0% Stop 9 0 0 11 6 0.036 12.16	0% 81% 19% Stop 16 0 13 3 19 6 0.06 11.508	100% 0% 0% Stop 312 312 0 0 376 6 0.947 9.385	0% 100% 0% Stop 227 0 227 0 274 6 0.652 8.869	0% 71% 29% Stop 160 0 114 46 192 6 0.447 8.661	100% 0% 0% Stop 7 7 0 0 8 6 0.023 9.655	0% 100% 0% Stop 198 0 198 0 239 6 0.606 9.14	0% 26% 74% Stop 383 0 99 284 461 6 1.103 8.606	100% 0% 0% Stop 201 201 0 242 6 0.681 10.429	0% 15% 85% Stop 160 0 24 136 193 6 0.484 9.318	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		100% 0% 0% Stop 9 0 0 11 6 0.036 12.16 Yes	0% 81% 19% Stop 16 0 13 3 19 6 0.06 11.508 Yes	100% 0% 0% Stop 312 312 0 0 376 6 0.947 9.385 Yes	0% 100% 0% Stop 227 0 227 0 274 6 0.652 8.869 Yes	0% 71% 29% Stop 160 0 114 46 192 6 0.447 8.661 Yes	100% 0% 0% Stop 7 7 0 0 8 6 0.023 9.655 Yes	0% 100% 0% Stop 198 0 198 0 239 6 0.606 9.14 Yes	0% 26% 74% Stop 383 0 99 284 461 6 1.103 8.606 Yes	100% 0% 0% Stop 201 201 0 0 242 6 0.681 10.429 Yes	0% 15% 85% Stop 160 0 24 136 193 6 0.484 9.318 Yes	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		100% 0% 0% Stop 9 0 0 11 6 0.036 12.16 Yes 296	0% 81% 19% Stop 16 0 13 3 19 6 0.06 11.508 Yes 313	100% 0% 0% Stop 312 312 0 0 376 6 0.947 9.385 Yes 391	0% 100% 0% Stop 227 0 227 0 274 6 0.652 8.869 Yes 411	0% 71% 29% Stop 160 0 114 46 192 6 0.447 8.661 Yes 419	100% 0% 0% Stop 7 7 0 0 8 6 0.023 9.655 Yes 369	0% 100% 0% Stop 198 0 198 0 239 6 0.606 9.14 Yes 394	0% 26% 74% Stop 383 0 99 284 461 6 1.103 8.606 Yes 420	100% 0% 0% Stop 201 201 0 0 242 6 0.681 10.429 Yes 349	0% 15% 85% Stop 160 0 24 136 193 6 0.484 9.318 Yes 389	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		100% 0% 0% Stop 9 0 0 11 6 0.036 12.16 Yes 296 9.86	0% 81% 19% Stop 16 0 13 3 19 6 0.06 11.508 Yes 313 9.208	100% 0% 0% Stop 312 312 0 0 376 6 0.947 9.385 Yes 391 7.085	0% 100% 0% Stop 227 0 227 6 0.652 8.869 Yes 411 6.569	0% 71% 29% Stop 160 0 114 46 192 6 0.447 8.661 Yes 419 6.361	100% 0% 0% Stop 7 7 0 0 8 6 0.023 9.655 Yes 369 7.446	0% 100% 0% Stop 198 0 198 0 239 6 0.606 9.14 Yes 394 6.931	0% 26% 74% Stop 383 0 99 284 461 6 1.103 8.606 Yes 420 6.396	100% 0% 0% Stop 201 201 0 0 242 6 0.681 10.429 Yes 349 8.129	0% 15% 85% Stop 160 0 24 136 193 6 0.484 9.318 Yes 389 7.018	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 9 0 0 11 6 0.036 12.16 Yes 296 9.86 0.037	0% 81% 19% Stop 16 0 13 3 19 6 0.06 11.508 Yes 313 9.208 0.061	100% 0% 0% Stop 312 312 0 0 376 6 0.947 9.385 Yes 391 7.085 0.962	0% 100% 0% Stop 227 0 227 0 274 6 0.652 8.869 Yes 411 6.569 0.667	0% 71% 29% Stop 160 0 114 46 192 6 0.447 8.661 Yes 419 6.361 0.458	100% 0% 0% Stop 7 7 0 0 8 6 0.023 9.655 Yes 369 7.446 0.022	0% 100% 0% Stop 198 0 198 0 239 6 0.606 9.14 Yes 394 6.931 0.607	0% 26% 74% Stop 383 0 99 284 461 6 1.103 8.606 Yes 420 6.396 1.098	100% 0% 0% Stop 201 201 0 0 242 6 0.681 10.429 Yes 349 8.129 0.693	0% 15% 85% Stop 160 0 24 136 193 6 0.484 9.318 Yes 389 7.018 0.496	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		100% 0% 0% Stop 9 0 0 11 6 0.036 12.16 Yes 296 9.86 0.037 15.3	0% 81% 19% Stop 16 0 13 3 19 6 0.06 11.508 Yes 313 9.208 0.061 14.9	100% 0% 0% Stop 312 312 0 0 376 6 0.947 9.385 Yes 391 7.085 0.962 64.5	0% 100% 0% Stop 227 0 227 0 274 6 0.652 8.869 Yes 411 6.569 0.667 26.7	0% 71% 29% Stop 160 0 114 46 192 6 0.447 8.661 Yes 419 6.361 0.458 18.2	100% 0% 0% Stop 7 7 0 0 8 6 0.023 9.655 Yes 369 7.446 0.022 12.7	0% 100% 0% Stop 198 0 198 0 239 6 0.606 9.14 Yes 394 6.931 0.607 25.1	0% 26% 74% Stop 383 0 99 284 461 6 1.103 8.606 Yes 420 6.396 1.098 104.2	100% 0% 0% Stop 201 201 0 0 242 6 0.681 10.429 Yes 349 8.129 0.693 32.7	0% 15% 85% Stop 160 0 24 136 193 6 0.484 9.318 Yes 389 7.018 0.496 20.5	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 9 0 0 11 6 0.036 12.16 Yes 296 9.86 0.037	0% 81% 19% Stop 16 0 13 3 19 6 0.06 11.508 Yes 313 9.208 0.061	100% 0% 0% Stop 312 312 0 0 376 6 0.947 9.385 Yes 391 7.085 0.962	0% 100% 0% Stop 227 0 227 0 274 6 0.652 8.869 Yes 411 6.569 0.667	0% 71% 29% Stop 160 0 114 46 192 6 0.447 8.661 Yes 419 6.361 0.458	100% 0% 0% Stop 7 7 0 0 8 6 0.023 9.655 Yes 369 7.446 0.022	0% 100% 0% Stop 198 0 198 0 239 6 0.606 9.14 Yes 394 6.931 0.607	0% 26% 74% Stop 383 0 99 284 461 6 1.103 8.606 Yes 420 6.396 1.098	100% 0% 0% Stop 201 201 0 0 242 6 0.681 10.429 Yes 349 8.129 0.693	0% 15% 85% Stop 160 0 24 136 193 6 0.484 9.318 Yes 389 7.018 0.496	

	۶	•	1	1	Ţ		
Lane Group	EBL	EBR	NBL	NBT	SBT		
Lane Configurations	*	7	ሻ	^	†		
Traffic Volume (vph)	198	320	487	1163	521		
Future Volume (vph)	198	320	487	1163	521		
Turn Type	Prot	pm+ov	pm+pt	NA	NA		
Protected Phases	8	1	1	6	2		
Permitted Phases		8	6				
Detector Phase	8	1	1	6	2		
Switch Phase	_	_					
Minimum Initial (s)	7.0	5.0	5.0	16.0	16.0		
Minimum Split (s)	15.0	11.4	11.4	24.4	24.4		
Total Split (s)	21.0	21.4	21.4	88.0	66.4		
Total Split (%)	19.3%	19.6%	19.6%	80.7%	60.9%		
Yellow Time (s)	4.0	4.4	4.4	4.4	4.4		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.4	6.4	6.4	6.4		
Lead/Lag		Lead	Lead		Lag		
Lead-Lag Optimize? Recall Mode	Mana	Yes	Yes	C May	Yes		
	None	None	None	C-Max	C-Max		
Act Effet Green (s)	14.5	35.1	82.1 0.75	82.1	61.1 0.56		
Actuated g/C Ratio	0.13	0.32	0.75	0.75			
v/c Ratio	0.88 81.9	0.47 7.2	23.5	0.46 5.8	0.37 12.9		
Control Delay Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	81.9	7.2	23.5	5.8	12.9		
LOS	61.9 F	7.2 A	23.5 C	3.0 A	12.9 B		
Approach Delay	35.7	A	U	11.0	12.9		
Approach LOS	33.7 D			Н.0	12.9 B		
	D			Б	D		
Intersection Summary							
Cycle Length: 109							
Actuated Cycle Length: 109							
Offset: 0 (0%), Referenced	to phase 2	:SBT and	6:NBTL,	Start of Y	'ellow		
Natural Cycle: 65							
Control Type: Actuated-Coo	ordinated						
Maximum v/c Ratio: 0.88							
Intersection Signal Delay: 1					ntersection		
Intersection Capacity Utiliza	ition 73.3%			I	CU Level o	of Service D	
Analysis Period (min) 15							
Splits and Phases: 105: 1	NW 97th Av	/enue & N	IW 17th 9	Street			
\$ Ø1	₩ Ø2 (F	2)				<u> </u>	
21.4s	66.4s	V					
A ac (n)							
Ø6 (R)							

	•	•	4	†	ļ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	208	337	513	1224	721
v/c Ratio	0.88	0.47	0.87	0.46	0.37
Control Delay	81.9	7.2	23.5	5.8	12.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	81.9	7.2	23.5	5.8	12.9
Queue Length 50th (ft)	144	18	107	146	129
Queue Length 95th (ft)	#275	88	#213	181	170
Internal Link Dist (ft)	997			269	190
Turn Bay Length (ft)			100		
Base Capacity (vph)	243	717	593	2664	1933
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.86	0.47	0.87	0.46	0.37
Intersection Summary					

Synchro 11 Light Report Future AM Peak Hour

⁹⁵th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	*	4	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	7	7	×	^	†		
Traffic Volume (veh/h)	198	320	487	1163	521	164	
Future Volume (veh/h)	198	320	487	1163	521	164	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.97	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	208	337	513	1224	548	173	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	245	435	628	2660	1462	459	
Arrive On Green	0.14	0.14	0.14	0.75	0.55	0.55	
Sat Flow, veh/h	1781	1585	1781	3647	2735	830	
Grp Volume(v), veh/h	208	337	513	1224	368	353	
Grp Sat Flow(s),veh/h/ln	1781	1585	1781	1777	1777	1695	
Q Serve(g_s), s	12.4	15.0	12.9	14.4	12.7	12.8	
Cycle Q Clear(g_c), s	12.4	15.0	12.9	14.4	12.7	12.8	
Prop In Lane	1.00	1.00	1.00			0.49	
_ane Grp Cap(c), veh/h	245	435	628	2660	983	938	
V/C Ratio(X)	0.85	0.78	0.82	0.46	0.37	0.38	
Avail Cap(c_a), veh/h	245	435	630	2660	983	938	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	45.9	36.5	9.9	5.3	13.7	13.7	
ncr Delay (d2), s/veh	22.9	8.2	7.7	0.6	1.1	1.2	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	7.0	9.2	5.6	4.6	5.2	5.0	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d),s/veh	68.8	44.7	17.6	5.8	14.8	14.9	
nGrp LOS	Е	D	В	Α	В	В	
Approach Vol, veh/h	545			1737	721		
Approach Delay, s/veh	53.9			9.3	14.8		
Approach LOS	D			Α	В		
Fimer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	21.3	66.7				88.0	21.0
Change Period (Y+Rc), s	6.4	6.4				6.4	6.0
Max Green Setting (Gmax), s	15.0	60.0				81.6	15.0
Max Q Clear Time (g_c+I1), s	14.9	14.8				16.4	17.0
Green Ext Time (p_c), s	0.0	1.7				4.1	0.0
· ,							
ntersection Summary			10.7				
HCM 6th Ctrl Delay			18.7				
HCM 6th LOS			В				

	•	•	†	/	ţ	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	ሻ	7	ተተኈ	ሻ	ተተተ	
Traffic Volume (vph)	316	189	968	232	1308	
Future Volume (vph)	316	189	968	232	1308	
Turn Type	Prot	Prot	NA	pm+pt	NA	
Protected Phases	4	4	6	5	2	
Permitted Phases		4		2		
Detector Phase	4	4	6	5	2	
Switch Phase						
Minimum Initial (s)	7.0	7.0	16.0	5.0	16.0	
Minimum Split (s)	24.1	24.1	24.8	11.8	24.8	
Total Split (s)	24.2	24.2	124.0	21.8	145.8	
Total Split (%)	14.2%	14.2%	72.9%	12.8%	85.8%	
Yellow Time (s)	4.0	4.0	4.4	4.4	4.4	
All-Red Time (s)	2.1	2.1	2.4	2.4	2.4	
_ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	6.1	6.8	6.8	6.8	
_ead/Lag			Lag	Lead		
_ead-Lag Optimize?			Yes	Yes		
Recall Mode	None	None	C-Max	None	C-Max	
Act Effct Green (s)	18.1	18.1	122.7	139.0	139.0	
Actuated g/C Ratio	0.11	0.11	0.72	0.82	0.82	
//c Ratio	1.79	0.65	0.33	0.65	0.33	
Control Delay	413.4	29.5	8.7	11.6	4.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	413.4	29.5	8.7	11.6	4.1	
_OS	F	С	Α	В	Α	
Approach Delay	269.7		8.7	_	5.2	
Approach LOS	F		Α		A	
ntersection Summary						
Cycle Length: 170						
Actuated Cycle Length: 17	0					
Offset: 87 (51%), Reference		2:SBTL	and 6:NB	T, Start o	of Yellow	
Natural Cycle: 65						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 1.79						
ntersection Signal Delay:	48.7			li	ntersection	n LOS: D
ntersection Capacity Utiliz)				of Service C
Analysis Period (min) 15						
Splits and Phases: 101:	NW 107th /	Avenue &	NW 19th	Street		
\						_ 5
♥ Ø2 (R)					<u></u>	√ Ø4
145.8 s						24.2 s
Ø5 Ø6	i (R)					.
21.00	(1)					

	<	•	†	>	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	336	201	1189	247	1391
v/c Ratio	1.79	0.65	0.33	0.65	0.33
Control Delay	413.4	29.5	8.7	11.6	4.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	413.4	29.5	8.7	11.6	4.1
Queue Length 50th (ft)	~558	47	157	50	121
Queue Length 95th (ft)	#770	141	189	70	136
Internal Link Dist (ft)	720		370		397
Turn Bay Length (ft)				150	
Base Capacity (vph)	188	307	3600	426	4157
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.79	0.65	0.33	0.58	0.33

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	4	†	/	/	
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	ተተኈ		ሻ	ተተተ
Traffic Volume (veh/h)	316	189	968	149	232	1308
Future Volume (veh/h)	316	189	968	149	232	1308
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	No	1.00	1.00	No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	336	201	1030	159	247	1391
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	190	169	3250	501	432	4175
Arrive On Green	0.11	0.11	0.73	0.73	0.05	0.82
Sat Flow, veh/h	1781	1585	4616	685	1781	5274
Grp Volume(v), veh/h	336	201	788	401	247	1391
Grp Sat Flow(s),veh/h/ln	1781	1585	1702	1729	1781	1702
Q Serve(g_s), s	18.1	18.1	13.8	13.8	5.8	11.6
Cycle Q Clear(g_c), s	18.1	18.1	13.8	13.8	5.8	11.6
Prop In Lane	1.00	1.00		0.40	1.00	
Lane Grp Cap(c), veh/h	190	169	2487	1263	432	4175
V/C Ratio(X)	1.77	1.19	0.32	0.32	0.57	0.33
Avail Cap(c_a), veh/h	190	169	2487	1263	505	4175
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	75.9	76.0	8.0	8.0	5.9	3.9
Incr Delay (d2), s/veh	367.8	130.0	0.3	0.7	0.4	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	27.7	21.2	5.1	5.4	2.1	3.7
Unsig. Movement Delay, s/ve						
LnGrp Delay(d),s/veh	443.8	205.9	8.4	8.7	6.4	4.1
LnGrp LOS	F	F	A	A	A	Α
Approach Vol, veh/h	537		1189	, · ·	, <u>, , </u>	1638
Approach Delay, s/veh	354.7		8.5			4.4
11	554.7 F					
Approach LOS	Г		Α			Α
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		145.8		24.2	14.8	131.0
Change Period (Y+Rc), s		6.8		6.1	6.8	6.8
Max Green Setting (Gmax), s		139.0		18.1	15.0	117.2
Max Q Clear Time (g_c+l1), s	3	13.6		20.1	7.8	15.8
Green Ext Time (p_c), s		12.4		0.0	0.2	8.9
Intersection Summary						
HCM 6th Ctrl Delay			61.8			
HCM 6th LOS			01.0 E			
I IOW OUI LOS			⊏			

Intersection												
Int Delay, s/veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† }		*	† \$			4			4	
Traffic Vol, veh/h	2	406	31	133	389	4	19	0	70	5	3	12
Future Vol, veh/h	2	406	31	133	389	4	19	0	70	5	3	12
Conflicting Peds, #/hr	0	0	3	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	None	-	_	None	-	-	None	-	-	None
Storage Length	-	_	_	125	-	_	_	_	_	-	-	_
Veh in Median Storage,	# -	0	_	-	0	_	_	1	_	_	1	_
Grade, %	<i>"</i>	0	-	-	0	-	-	0	-	-	0	_
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	472	36	155	452	5	22	0	81	6	3	14
M = i = =/N Ai== = .	1-:- 4		_	4-1- 0			A! 4			Alian e C		
	lajor1			Major2			Minor1	405:		Minor2	1055	
Conflicting Flow All	457	0	0	511	0	0	1035	1264	257	1005	1280	229
Stage 1	-	-	-	-	-	-	497	497	-	765	765	-
Stage 2	-	-	-	-	-	-	538	767	-	240	515	-
Critical Hdwy	4.14	-	-	4.14	-	-	5	5	4.5	5	5	4.5
Critical Hdwy Stg 1	-	-	-	-	-	-	5	5	-	5	5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5	5	-	5	5	-
Follow-up Hdwy	2.22	-	-	2.22	-	-	3	3	3	3	3	3
Pot Cap-1 Maneuver	1100	-	-	1050	-	-	425	335	967	439	330	990
Stage 1	-	-	-	-	-	-	735	735	-	561	561	-
Stage 2	-	-	-	-	-	-	705	560	-	949	722	-
Platoon blocked, %	4400	-	-	40.47	-	-	00-	004	004	0=0	000	000
Mov Cap-1 Maneuver	1100	-	-	1047	-	-	367	284	964	356	280	990
Mov Cap-2 Maneuver	-	-	-	-	-	-	460	381	-	443	362	-
Stage 1	-	-	-	-	-	-	731	731	-	559	478	-
Stage 2	-	-	-	-	-	-	588	477	-	866	718	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			2.3			10.3			10.9		
HCM LOS							В			В		
Minor Long/Mailer M.		UDL 4	EDI	EDT	EDD	///DI	WDT	WDD	2DL 4			
Minor Lane/Major Mvmt		VBLn1	EBL	EBT	EBR	WBL	WBT	WBR				
Capacity (veh/h)		781	1100	-		1047	-	-	631			
HCM Lane V/C Ratio			0.002	-	-	0.148	-		0.037			
HCM Control Delay (s)		10.3	8.3	-	-	9	-	-	10.9			
HCM Lane LOS		В	A	-	-	A	-	-	В			
HCM 95th %tile Q(veh)		0.5	0	-	-	0.5	-	-	0.1			

e, # 0 0 83 2 573	FIT EBR FIG 8 WBL 0 0 0 Free 83 2 0	WBT 512 512 0 Free None 0 0 83 2 617	NBL 0 0 0 Stop - 0 0 83 2	NBR 10 10 0 Stop None 0 -	
476 476 0 Free - - e, # 0 0 83 2 573	6 8 6 8 0 0 ee Free - None - 0 0 - 03 83 2 2	0 0 0 Free - - - - 83 2	512 512 0 Free None - 0 0 83 2	0 0 0 Stop - 0 0	10 10 0 Stop None 0
476 476 0 Free - - e, # 0 0 83 2 573	6 8 6 8 0 0 ee Free - None - 0 0 - 03 83 2 2	0 0 0 Free - - - - 83 2	512 512 0 Free None - 0 0 83 2	0 0 0 Stop - 0 0	10 10 0 Stop None 0
476 476 0 Free - e, # 0 0 83 2 573	76 8 76 8 0 0 0 ee Free - None 0 0 - 0 33 83 2 2	0 0 Free - - - - 83 2	512 512 0 Free None - 0 0 83 2	0 0 Stop - - 0 0 83	10 10 0 Stop None 0
476 0 Free - e, # 0 0 83 2 573	6 8 0 0 ee Free - None 0 - 0 - 33 83 2 2	0 0 Free - - - - 83 2	512 0 Free None - 0 0 83 2	0 0 Stop - - 0 0 83	10 0 Stop None 0
0 Free - e, # 0 0 83 2 573	0 0 ee Free - None 0 - 0 - 33 83 2 2	0 Free - - - - 83 2	0 Free None - 0 0 83 2	0 Stop - - 0 0 83	0 Stop None 0
Free 0	ee Free - None 0 - 0 - 33 83 2 2	Free 83 2	Free None - 0 0 83 2	Stop 0 0 83	Stop None 0 -
- e, # 0 0 83 2 573	- None 0 - 0 - 33 83 2 2	- - - 83 2	None 0 0 83 2	0 0 83	None 0 -
e, # 0 0 83 2 573	0 - 0 - 33 83 2 2	- - 83 2	0 0 83 2	0 0 83	0 - -
0 83 2 573	0 - 0 - 33 83 2 2	- - 83 2	0 83 2	0 0 83	-
0 83 2 573	0 - 33 83 2 2	- 83 2	0 83 2	0 83	-
83 2 573	33 83 2 2	83 2	83 2	83	
2 573	2 2	2	2		02
573				2	
	73 10	0	617		2
				0	12
N/laior1	r1 N	Major2	R	Minor1	
Major1					292
					-
					-
-		-			4.5
-		-	-	-	-
-		-	-	-	-
-		-	-	-	3
-			-	0	938
-		0	-	0	-
-		0	-	0	-
-			-		
-		-	-	-	938
-		-	-	-	-
_		_	_	_	_
_		_	_	_	_
EB	В				
0	0	0		8.9	
				Α	
o t	NDI n1	EDT	EDD	WDT	
IIL		EDI	EDR	VVDI	
		-	-	-	
		_		-	
l .	8.9	-	-	-	
)					
)	A 0	-	-	-	
	nt				-

Intersection												
Intersection Delay, s/veh	20.6											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		×	↑ ↑		×	ĵ.		*	f)	
Traffic Vol, veh/h	70	390	17	3	291	113	55	23	14	188	22	179
Future Vol, veh/h	70	390	17	3	291	113	55	23	14	188	22	179
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	80	448	20	3	334	130	63	26	16	216	25	206
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	22.4			20.5			14.4			20.1		
HCM LOS	С			С			В			С		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	
Lane Vol Left, %		NBLn1 100%	NBLn2	EBLn1 100%	EBLn2	EBLn3	WBLn1 100%	WBLn2	WBLn3	SBLn1 100%	SBLn2	
Vol Left, %		100%	0%	100%	0%	0%	100%	0%	0%	100%	0%	
Vol Left, % Vol Thru, %		100% 0%	0% 62%	100% 0%	0% 100%	0% 88%	100% 0%	0% 100%	0% 46%	100% 0%	0% 11%	
Vol Left, % Vol Thru, % Vol Right, %		100% 0% 0%	0% 62% 38%	100% 0% 0%	0% 100% 0%	0% 88% 12%	100% 0% 0%	0% 100% 0%	0% 46% 54%	100% 0% 0%	0% 11% 89%	
Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 62% 38% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 88% 12% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 46% 54% Stop	100% 0% 0% Stop	0% 11% 89% Stop 201	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 55	0% 62% 38% Stop 37	100% 0% 0% Stop 70	0% 100% 0% Stop 260	0% 88% 12% Stop 147	100% 0% 0% Stop 3	0% 100% 0% Stop 194 0	0% 46% 54% Stop 210	100% 0% 0% Stop 188	0% 11% 89% Stop 201	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 55 55 0	0% 62% 38% Stop 37	100% 0% 0% Stop 70	0% 100% 0% Stop 260	0% 88% 12% Stop 147	100% 0% 0% Stop 3	0% 100% 0% Stop 194	0% 46% 54% Stop 210	100% 0% 0% Stop 188 188	0% 11% 89% Stop 201	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 55 55	0% 62% 38% Stop 37 0 23	100% 0% 0% Stop 70 70	0% 100% 0% Stop 260 0	0% 88% 12% Stop 147 0 130	100% 0% 0% Stop 3 3	0% 100% 0% Stop 194 0	0% 46% 54% Stop 210 0 97	100% 0% 0% Stop 188 188	0% 11% 89% Stop 201 0	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 55 55 0 0 63	0% 62% 38% Stop 37 0 23 14 43	100% 0% 0% Stop 70 70 0	0% 100% 0% Stop 260 0 260	0% 88% 12% Stop 147 0 130 17 169	100% 0% 0% Stop 3 3 0	0% 100% 0% Stop 194 0 194	0% 46% 54% Stop 210 0 97 113 241	100% 0% 0% Stop 188 188 0 0 216	0% 11% 89% Stop 201 0 22 179	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 55 55 0 0 63 6	0% 62% 38% Stop 37 0 23 14 43 6	100% 0% 0% Stop 70 70 0 0 80 6	0% 100% 0% Stop 260 0 260 0 299 6	0% 88% 12% Stop 147 0 130 17 169 6	100% 0% 0% Stop 3 3 0 0 0 3 6	0% 100% 0% Stop 194 0 194 0 223 6	0% 46% 54% Stop 210 0 97 113 241 6 0.549	100% 0% 0% Stop 188 188 0 0	0% 11% 89% Stop 201 0 22 179 231 6 0.506	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 55 55 0 0 63	0% 62% 38% Stop 37 0 23 14 43	100% 0% 0% Stop 70 70 0 80	0% 100% 0% Stop 260 0 260 0 299	0% 88% 12% Stop 147 0 130 17 169	100% 0% 0% Stop 3 3 0 0	0% 100% 0% Stop 194 0 194 0 223	0% 46% 54% Stop 210 0 97 113 241	100% 0% 0% Stop 188 188 0 0 216	0% 11% 89% Stop 201 0 22 179 231 6	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 55 55 0 0 63 6 0.179 10.187 Yes	0% 62% 38% Stop 37 0 23 14 43 6 0.111 9.405 Yes	100% 0% 0% Stop 70 70 0 0 80 6	0% 100% 0% Stop 260 0 260 0 299 6 0.697 8.396 Yes	0% 88% 12% Stop 147 0 130 17 169 6	100% 0% 0% Stop 3 3 0 0 0 3 6	0% 100% 0% Stop 194 0 194 0 223 6	0% 46% 54% Stop 210 0 97 113 241 6 0.549	100% 0% 0% Stop 188 188 0 0 216 6	0% 11% 89% Stop 201 0 22 179 231 6 0.506	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		100% 0% 0% Stop 55 55 0 0 63 6 0.179 10.187 Yes 352	0% 62% 38% Stop 37 0 23 14 43 6 0.111 9.405 Yes 381	100% 0% 0% Stop 70 0 0 80 6 0.198 8.872 Yes 406	0% 100% 0% Stop 260 0 260 0 299 6 0.697 8.396 Yes 433	0% 88% 12% Stop 147 0 130 17 169 6 0.39 8.313 Yes 436	100% 0% 0% Stop 3 3 0 0 0 9.09 9.09 Yes 394	0% 100% 0% Stop 194 0 194 0 223 6 0.531 8.574 Yes 421	0% 46% 54% Stop 210 0 97 113 241 6 0.549 8.186 Yes 442	100% 0% 0% Stop 188 188 0 0 216 6 0.541 9.019 Yes 400	0% 11% 89% Stop 201 0 22 179 231 6 0.506 7.883 Yes 457	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		100% 0% 0% Stop 55 55 0 0 63 6 0.179 10.187 Yes 352 7.949	0% 62% 38% Stop 37 0 23 14 43 6 0.111 9.405 Yes 381 7.166	100% 0% 0% Stop 70 70 0 0 80 6 0.198 8.872 Yes	0% 100% 0% Stop 260 0 260 0 299 6 0.697 8.396 Yes	0% 88% 12% Stop 147 0 130 17 169 6 0.39 8.313 Yes 436 6.013	100% 0% 0% Stop 3 3 0 0 0 0 3 6 0.009 9.09 Yes	0% 100% 0% Stop 194 0 194 0 223 6 0.531 8.574 Yes	0% 46% 54% Stop 210 0 97 113 241 6 0.549 8.186 Yes	100% 0% 0% Stop 188 188 0 0 216 6 0.541 9.019 Yes	0% 11% 89% Stop 201 0 22 179 231 6 0.506 7.883 Yes	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 55 55 0 0 63 6 0.179 10.187 Yes 352 7.949 0.179	0% 62% 38% Stop 37 0 23 14 43 6 0.111 9.405 Yes 381 7.166 0.113	100% 0% 0% Stop 70 0 0 80 6 0.198 8.872 Yes 406 6.611 0.197	0% 100% 0% Stop 260 0 260 0 299 6 0.697 8.396 Yes 433 6.096 0.691	0% 88% 12% Stop 147 0 130 17 169 6 0.39 8.313 Yes 436 6.013 0.388	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.09 Yes 394 6.838 0.008	0% 100% 0% Stop 194 0 194 0 223 6 0.531 8.574 Yes 421 6.322 0.53	0% 46% 54% Stop 210 0 97 113 241 6 0.549 8.186 Yes 442 5.933 0.545	100% 0% 0% Stop 188 188 0 0 216 6 0.541 9.019 Yes 400 6.764 0.54	0% 11% 89% Stop 201 0 22 179 231 6 0.506 7.883 Yes 457 5.628 0.505	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		100% 0% 0% Stop 55 55 0 0 63 6 0.179 10.187 Yes 352 7.949 0.179 15.2	0% 62% 38% Stop 37 0 23 14 43 6 0.111 9.405 Yes 381 7.166 0.113 13.3	100% 0% 0% Stop 70 0 0 80 6 0.198 8.872 Yes 406 6.611 0.197	0% 100% 0% Stop 260 0 260 0 299 6 0.697 8.396 Yes 433 6.096 0.691 28.3	0% 88% 12% Stop 147 0 130 17 169 6 0.39 8.313 Yes 436 6.013 0.388 16.2	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.09 Yes 394 6.838 0.008 11.9	0% 100% 0% Stop 194 0 194 0 223 6 0.531 8.574 Yes 421 6.322 0.53 20.7	0% 46% 54% Stop 210 0 97 113 241 6 0.549 8.186 Yes 442 5.933 0.545 20.5	100% 0% 0% Stop 188 188 0 0 216 6 0.541 9.019 Yes 400 6.764 0.54 21.9	0% 11% 89% Stop 201 0 22 179 231 6 0.506 7.883 Yes 457 5.628 0.505 18.5	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 55 55 0 0 63 6 0.179 10.187 Yes 352 7.949 0.179	0% 62% 38% Stop 37 0 23 14 43 6 0.111 9.405 Yes 381 7.166 0.113	100% 0% 0% Stop 70 0 0 80 6 0.198 8.872 Yes 406 6.611 0.197	0% 100% 0% Stop 260 0 260 0 299 6 0.697 8.396 Yes 433 6.096 0.691	0% 88% 12% Stop 147 0 130 17 169 6 0.39 8.313 Yes 436 6.013 0.388	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.09 Yes 394 6.838 0.008	0% 100% 0% Stop 194 0 194 0 223 6 0.531 8.574 Yes 421 6.322 0.53	0% 46% 54% Stop 210 0 97 113 241 6 0.549 8.186 Yes 442 5.933 0.545	100% 0% 0% Stop 188 188 0 0 216 6 0.541 9.019 Yes 400 6.764 0.54	0% 11% 89% Stop 201 0 22 179 231 6 0.506 7.883 Yes 457 5.628 0.505	

	٠	*	1	1	ļ		
Lane Group	EBL	EBR	NBL	NBT	SBT		
Lane Configurations	*	7	۲	^	†		
Traffic Volume (vph)	139	529	233	813	1361		
Future Volume (vph)	139	529	233	813	1361		
Turn Type	Prot	pm+ov	pm+pt	NA	NA		
Protected Phases	8	1	1	6	2		
Permitted Phases		8	6				
Detector Phase	8	1	1	6	2		
Switch Phase							
Minimum Initial (s)	7.0	5.0	5.0	16.0	16.0		
Minimum Split (s)	15.0	11.4	11.4	24.4	24.4		
Total Split (s)	21.0	21.4	21.4	88.0	66.4		
Total Split (%)	19.3%	19.6%	19.6%	80.7%	60.9%		
Yellow Time (s)	4.0	4.4	4.4	4.4	4.4		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.4	6.4	6.4	6.4		
Lead/Lag		Lead	Lead		Lag		
Lead-Lag Optimize?		Yes	Yes		Yes		
Recall Mode	None	None	None	C-Max	C-Max		
Act Effct Green (s)	12.8	36.0	83.8	83.8	60.2		
Actuated g/C Ratio	0.12	0.33	0.77	0.77	0.55		
v/c Ratio	0.72	1.05	0.72	0.32	0.81		
Control Delay	65.3	87.1	39.7	4.4	24.0		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	65.3	87.1	39.7	4.4	24.0		
LOS	E	F	D	A	C C		
Approach Delay	82.6	•		12.3	24.0		
Approach LOS	52.6 F			В	C C		
Intersection Summary							
Cycle Length: 109	0						
Actuated Cycle Length: 109		ODT and	C.NIDTI	Ctart of V	'allaw		
Offset: 0 (0%), Referenced	to phase 2	SBI and	o:NBTL,	Start of Y	ellow		
Natural Cycle: 90	مسالم داد حا						
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 1.05	20.5					100.0	
Intersection Signal Delay: 3					ntersection		
Intersection Capacity Utiliz	ation 84.4%) 		[(JU Level o	f Service E	
Analysis Period (min) 15							
Splits and Phases: 105:	NW 97th Av	venue & N	IW 17th S	Street			
\$ ∅1	₩ Ø2 (F	3)					
21.4s	66.4s	7					
Tac (n)							
Ø6 (R)							

	•	•	1	†	ļ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	149	569	251	874	1576
v/c Ratio	0.72	1.05	0.72	0.32	0.81
Control Delay	65.3	87.1	39.7	4.4	24.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	65.3	87.1	39.7	4.4	24.0
Queue Length 50th (ft)	101	~420	116	86	445
Queue Length 95th (ft)	168	#638	#249	115	548
Internal Link Dist (ft)	997			269	190
Turn Bay Length (ft)			100		
Base Capacity (vph)	243	542	347	2720	1936
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.61	1.05	0.72	0.32	0.81

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

	٠	*	1	1	Ţ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	*	7	*	^	↑ ↑			
Traffic Volume (veh/h)	139	529	233	813	1361	105		
Future Volume (veh/h)	139	529	233	813	1361	105		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.98		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No			No	No			
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	149	569	251	874	1463	113		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	245	326	330	2660	2074	159		
Arrive On Green	0.14	0.14	0.07	1.00	0.83	0.83		
Sat Flow, veh/h	1781	1585	1781	3647	3431	256		
Grp Volume(v), veh/h	149	569	251	874	775	801		
Grp Sat Flow(s),veh/h/ln	1781	1585	1781	1777	1777	1817		
Q Serve(g_s), s	8.6	15.0	5.2	0.2	19.6	20.1		
Cycle Q Clear(g_c), s	8.6	15.0	5.2	0.2	19.6	20.1		
Prop In Lane	1.00	1.00	1.00			0.14		
Lane Grp Cap(c), veh/h	245	326	330	2660	1104	1129		
V/C Ratio(X)	0.61	1.74	0.76	0.33	0.70	0.71		
Avail Cap(c_a), veh/h	245	326	453	2660	1104	1129		
HCM Platoon Ratio	1.00	1.00	1.00	1.33	1.33	1.33		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Jniform Delay (d), s/veh	44.2	43.3	14.2	0.1	5.3	5.3		
Incr Delay (d2), s/veh	3.8	346.9	3.0	0.3	3.7	3.8		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	4.0	40.1	3.9	0.2	4.9	5.1		
Jnsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	48.0	390.2	17.3	0.4	9.0	9.1		
LnGrp LOS	D	F	В	Α	Α	Α		
Approach Vol, veh/h	718			1125	1576			
Approach Delay, s/veh	319.2			4.2	9.1			
Approach LOS	F			Α	Α			
Timer - Assigned Phs	1	2				6	8	
Phs Duration (G+Y+Rc), s	13.8	74.2				88.0	21.0	
Change Period (Y+Rc), s	6.4	6.4				6.4	6.0	
Max Green Setting (Gmax), s	15.0	60.0				81.6	15.0	
Max Q Clear Time (g_c+l1), s	7.2	22.1				2.2	17.0	
Green Ext Time (p_c), s	0.2	4.7				2.6	0.0	
·	J.L	1.7				2.0	0.0	
Intersection Summary								
HCM 6th Ctrl Delay			72.6					
HCM 6th LOS			Е					

	•	•	†	/	+	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	ሻ	7	ተተኈ	ሻ	ተተተ	
Traffic Volume (vph)	332	199	1018	244	1375	
Future Volume (vph)	332	199	1018	244	1375	
Turn Type	Prot	Prot	NA	pm+pt	NA	
Protected Phases	4	4	6	5	2	
Permitted Phases		4		2		
Detector Phase	4	4	6	5	2	
Switch Phase						
Minimum Initial (s)	7.0	7.0	16.0	5.0	16.0	
Minimum Split (s)	24.1	24.1	24.8	11.8	24.8	
Total Split (s)	24.2	24.2	124.0	21.8	145.8	
Total Split (%)	14.2%	14.2%	72.9%	12.8%	85.8%	
Yellow Time (s)	4.0	4.0	4.4	4.4	4.4	
All-Red Time (s)	2.1	2.1	2.4	2.4	2.4	
_ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.1	6.1	6.8	6.8	6.8	
Lead/Lag			Lag	Lead		
_ead-Lag Optimize?			Yes	Yes		
Recall Mode	None	None	C-Max	None	C-Max	
Act Effct Green (s)	18.1	18.1	122.0	139.0	139.0	
Actuated g/C Ratio	0.11	0.11	0.72	0.82	0.82	
v/c Ratio	1.88	0.69	0.35	0.71	0.35	
Control Delay	450.9	33.0	9.1	14.9	4.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	450.9	33.0	9.1	14.9	4.2	
LOS	F	C	A	В	Α	
Approach Delay	294.1		9.1		5.8	
Approach LOS	F		A		A	
ntersection Summary						
Cycle Length: 170						
Actuated Cycle Length: 17	0					
Offset: 87 (51%), Reference	ced to phase	2:SBTL	and 6:NB	T, Start o	of Yellow	
Natural Cycle: 65				,		
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 1.88						
ntersection Signal Delay:	53.1			lı	ntersection	n LOS: D
Intersection Capacity Utiliz		,				of Service C
Analysis Period (min) 15						
Splits and Phases: 101:	NW 107th A	Avenue &	NW 19th	Street		
\.						1.5
▼ Ø2 (R)						▼ Ø4
145.8 s						24.2 s
→ 1 1 ac	(R)					_
21 9 0	(K)					

	•	•	†	>	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	353	212	1249	260	1463
v/c Ratio	1.88	0.69	0.35	0.71	0.35
Control Delay	450.9	33.0	9.1	14.9	4.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	450.9	33.0	9.1	14.9	4.2
Queue Length 50th (ft)	~597	58	170	53	130
Queue Length 95th (ft)	#811	157	211	74	145
Internal Link Dist (ft)	720		370		397
Turn Bay Length (ft)				150	
Base Capacity (vph)	188	308	3581	407	4157
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.88	0.69	0.35	0.64	0.35

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	•	†	<i>></i>	/	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	ተተ _ጉ		ሻ	^
Traffic Volume (veh/h)	332	199	1018	156	244	1375
Future Volume (veh/h)	332	199	1018	156	244	1375
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00		0.98	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	353	212	1083	166	260	1463
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	190	169	3243	497	415	4175
Arrive On Green	0.11	0.11	0.73	0.73	0.05	0.82
Sat Flow, veh/h	1781	1585	4620	682	1781	5274
Grp Volume(v), veh/h	353	212	828	421	260	1463
Grp Sat Flow(s),veh/h/ln	1781	1585	1702	1729	1781	1702
Q Serve(g_s), s	18.1	18.1	14.8	14.9	6.1	12.4
Cycle Q Clear(g_c), s	18.1	18.1	14.8	14.9	6.1	12.4
Prop In Lane	1.00	1.00		0.39	1.00	
Lane Grp Cap(c), veh/h	190	169	2480	1260	415	4175
V/C Ratio(X)	1.86	1.26	0.33	0.33	0.63	0.35
Avail Cap(c_a), veh/h	190	169	2480	1260	485	4175
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	75.9	76.0	8.3	8.3	6.4	4.0
Incr Delay (d2), s/veh	407.1	154.4	0.4	0.7	1.1	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	29.8	22.3	5.6	5.8	2.3	4.0
Unsig. Movement Delay, s/ve						
LnGrp Delay(d),s/veh	483.0	230.3	8.6	9.0	7.5	4.2
LnGrp LOS	+00.0	200.0 F	Α	3.0 A	7.5 A	A.Z
Approach Vol, veh/h	565	<u> </u>	1249			1723
• •	388.2		8.8			4.7
Approach Delay, s/veh	_					
Approach LOS	F		Α			А
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		145.8		24.2	15.1	130.7
Change Period (Y+Rc), s		6.8		6.1	6.8	6.8
Max Green Setting (Gmax), s		139.0		18.1	15.0	117.2
Max Q Clear Time (g_c+l1), s		14.4		20.1	8.1	16.9
Green Ext Time (p_c), s		13.6		0.0	0.2	9.6
Intersection Summary						
•			C7 4			
HCM 6th Ctrl Delay			67.4			
HCM 6th LOS			Е			

Intersection												
Int Delay, s/veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† }		*	† \$			4			4	
Traffic Vol, veh/h	2	426	33	140	409	4	20	0	73	5	3	13
Future Vol, veh/h	2	426	33	140	409	4	20	0	73	5	3	13
Conflicting Peds, #/hr	0	0	3	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	None	-	_	None	-	-	None	-	-	None
Storage Length	-	_	_	125	-	_	_	-	_	_	-	-
Veh in Median Storage	.# -	0	_	-	0	_	_	1	_	_	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	495	38	163	476	5	23	0	85	6	3	15
Major/Minor	laier1		N	Major2			Minor1			Minor2		
	//ajor1	0			^			1200			1245	044
Conflicting Flow All	481	0	0	536	0	0	1087	1328	270	1057	1345	241
Stage 1	-	-	-	-	-	-	521	521	-	805	805	-
Stage 2	111	-	-	111	-	-	566	807	- 1 E	252	540	- 1 E
Critical Hdwy	4.14	-	-	4.14	-	-	5	5	4.5	5	5	4.5
Critical Hdwy Stg 1	-	-	-	-	-	-	5	5 5	-	5 5	5 5	-
Critical Hdwy Stg 2	2.22	-	-	2.22	-	-	3	3	3	3	3	3
Follow-up Hdwy Pot Cap-1 Maneuver	1078	-	-	1028	-	-	403	314	956	416	308	980
•		-	-	1020		-	717	717		538	538	960
Stage 1	-	-	-	_	-	-	686	537	-	938	704	
Stage 2 Platoon blocked, %	-		-		-	-	000	551	-	330	704	-
Mov Cap-1 Maneuver	1078	-	-	1025	-	-	344	263	953	332	257	980
Mov Cap-1 Maneuver	1070	-	_	1025	-	_	439	361	900	422	340	900
Stage 1	-	-	-	-	-	-	713	713	-	536	452	
Stage 2	-	_	_		-	_	564	452	-	852	700	-
Slaye Z	<u>-</u>	_	<u>-</u>	_	_	_	304	402	<u>-</u>	002	700	<u>-</u>
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			2.3			10.5			11.1		
HCM LOS							В			В		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		761	1078	-		1025	-	-	619			
HCM Lane V/C Ratio		0.142		_		0.159	_		0.039			
HCM Control Delay (s)		10.5	8.3	-	-	9.2	-	-				
HCM Lane LOS		В	A	-	_	A	-	_	В			
HCM 95th %tile Q(veh)		0.5	0	-	_	0.6	_	-	0.1			
222 /2007												

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
	†	רטוע	1100	↑ ↑	HDL	T T
Traffic Vol, veh/h	501	9	0	538	0	11
Future Vol, veh/h	501	9	0	538	0	11
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		- -	None
	-	None -	-	None	-	0
Storage Length	- + 0			-		
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	604	11	0	648	0	13
Major/Minor Ma	ajor1	N	Major2	N	/linor1	
Conflicting Flow All	0	0		_	-	308
Stage 1	_	-	_	_	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_	_	_	_	4.5
Critical Hdwy Stg 1	_		_	_	_	4.5
		_				
Critical Hdwy Stg 2	-		-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3
Pot Cap-1 Maneuver	-	-	0	-	0	926
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	926
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
			0			
HCM Control Delay, s	0		U		8.9	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBT	
Capacity (veh/h)		926	-	-	-	
HCM Lane V/C Ratio		0.014	-	-	-	
HCM Control Delay (s)		8.9	-	-	_	
HCM Lane LOS		A	-	-	_	
HCM 95th %tile Q(veh)		0	_	_	-	

Intersection	20.0											
Intersection Delay, s/veh	23.2											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	†		7	1		7	1	
Traffic Vol, veh/h	73	410	17	3	306	119	58	24	14	198	23	188
Future Vol, veh/h	73	410	17	3	306	119	58	24	14	198	23	188
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	84	471	20	3	352	137	67	28	16	228	26	216
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	25.7			23			15.1			22.4		
HCM LOS	D			С			С			С		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	
Lane Vol Left, %		NBLn1 100%	NBLn2	EBLn1 100%	EBLn2 0%	EBLn3	WBLn1 100%	WBLn2	WBLn3		SBLn2	
										SBLn1		
Vol Left, %		100%	0%	100%	0%	0%	100%	0%	0%	SBLn1 100%	0%	
Vol Left, % Vol Thru, %		100% 0%	0% 63%	100% 0%	0% 100%	0% 89%	100% 0%	0% 100%	0% 46%	SBLn1 100% 0%	0% 11%	
Vol Left, % Vol Thru, % Vol Right, %		100% 0% 0%	0% 63% 37%	100% 0% 0%	0% 100% 0%	0% 89% 11%	100% 0% 0%	0% 100% 0%	0% 46% 54%	SBLn1 100% 0% 0%	0% 11% 89%	
Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 63% 37% Stop 38 0	100% 0% 0% Stop	0% 100% 0% Stop 273	0% 89% 11% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 46% 54% Stop 221	SBLn1 100% 0% 0% Stop	0% 11% 89% Stop 211	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 58 58	0% 63% 37% Stop 38 0 24	100% 0% 0% Stop 73 73	0% 100% 0% Stop 273	0% 89% 11% Stop 154 0 137	100% 0% 0% Stop 3 3	0% 100% 0% Stop 204	0% 46% 54% Stop 221 0	SBLn1 100% 0% 0% Stop 198 198	0% 11% 89% Stop 211 0 23	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 58 58 0	0% 63% 37% Stop 38 0 24	100% 0% 0% Stop 73 73 0	0% 100% 0% Stop 273 0 273	0% 89% 11% Stop 154 0 137	100% 0% 0% Stop 3 3 0	0% 100% 0% Stop 204 0 204	0% 46% 54% Stop 221 0 102 119	SBLn1 100% 0% 0% Stop 198 198 0	0% 11% 89% Stop 211 0 23 188	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 58 58 0	0% 63% 37% Stop 38 0 24 14	100% 0% 0% Stop 73 73 0 0	0% 100% 0% Stop 273 0 273 0	0% 89% 11% Stop 154 0 137 17	100% 0% 0% Stop 3 3 0	0% 100% 0% Stop 204 0 204 0 234	0% 46% 54% Stop 221 0 102 119 254	SBLn1 100% 0% 0% Stop 198 198 0 0 228	0% 11% 89% Stop 211 0 23 188 243	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 58 58 0 0	0% 63% 37% Stop 38 0 24 14 44	100% 0% 0% Stop 73 73 0 0	0% 100% 0% Stop 273 0 273 0 314	0% 89% 11% Stop 154 0 137 17	100% 0% 0% Stop 3 3 0 0	0% 100% 0% Stop 204 0 204 0 234	0% 46% 54% Stop 221 0 102 119 254	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6	0% 11% 89% Stop 211 0 23 188 243 6	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 58 58 0 0 67 6	0% 63% 37% Stop 38 0 24 14 44 6	100% 0% 0% Stop 73 73 0 0 84 6	0% 100% 0% Stop 273 0 273 0 314 6	0% 89% 11% Stop 154 0 137 17 177 6	100% 0% 0% Stop 3 3 0 0 0 3 6	0% 100% 0% Stop 204 0 204 0 234 6	0% 46% 54% Stop 221 0 102 119 254 6 0.598	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6 0.587	0% 11% 89% Stop 211 0 23 188 243 6 0.549	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		100% 0% 0% Stop 58 58 0 0	0% 63% 37% Stop 38 0 24 14 44	100% 0% 0% Stop 73 73 0 0	0% 100% 0% Stop 273 0 273 0 314	0% 89% 11% Stop 154 0 137 17	100% 0% 0% Stop 3 3 0 0	0% 100% 0% Stop 204 0 204 0 234	0% 46% 54% Stop 221 0 102 119 254	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6	0% 11% 89% Stop 211 0 23 188 243 6	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		100% 0% 0% Stop 58 58 0 0 67 6 0.196 10.559 Yes	0% 63% 37% Stop 38 0 24 14 44 6 0.119 9.782 Yes	100% 0% 0% Stop 73 73 0 0 84 6 0.213 9.143 Yes	0% 100% 0% Stop 273 0 273 0 314 6 0.753 8.627 Yes	0% 89% 11% Stop 154 0 137 17 177 6 0.419 8.547 Yes	100% 0% 0% Stop 3 3 0 0 0 0 3 6 0.009 9.378 Yes	0% 100% 0% Stop 204 0 204 0 234 6 0.577 8.861 Yes	0% 46% 54% Stop 221 0 102 119 254 6 0.598 8.471 Yes	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6 0.587 9.291 Yes	0% 11% 89% Stop 211 0 23 188 243 6 0.549 8.152 Yes	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		100% 0% 0% Stop 58 58 0 0 67 6 0.196 10.559 Yes 340	0% 63% 37% Stop 38 0 24 14 44 6 0.119 9.782 Yes 366	100% 0% 0% Stop 73 73 0 0 84 6 0.213 9.143 Yes 393	0% 100% 0% Stop 273 0 273 0 314 6 0.753 8.627 Yes 421	0% 89% 11% Stop 154 0 137 17 177 6 0.419 8.547 Yes 422	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.378 Yes 382	0% 100% 0% Stop 204 0 204 0 234 6 0.577 8.861 Yes 408	0% 46% 54% Stop 221 0 102 119 254 6 0.598 8.471 Yes 427	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6 0.587 9.291 Yes 389	0% 11% 89% Stop 211 0 23 188 243 6 0.549 8.152 Yes 441	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		100% 0% 0% Stop 58 58 0 0 67 6 0.196 10.559 Yes 340 8.324	0% 63% 37% Stop 38 0 24 14 44 6 0.119 9.782 Yes 366 7.547	100% 0% 0% Stop 73 73 0 0 84 6 0.213 9.143 Yes 393 6.893	0% 100% 0% Stop 273 0 273 0 314 6 0.753 8.627 Yes 421 6.376	0% 89% 11% Stop 154 0 137 17 177 6 0.419 8.547 Yes 422 6.296	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.378 Yes 382 7.13	0% 100% 0% Stop 204 0 204 0 234 6 0.577 8.861 Yes 408 6.612	0% 46% 54% Stop 221 0 102 119 254 6 0.598 8.471 Yes 427 6.223	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6 0.587 9.291 Yes 389 7.041	0% 11% 89% Stop 211 0 23 188 243 6 0.549 8.152 Yes 441 5.902	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 58 58 0 0 67 6 0.196 10.559 Yes 340 8.324 0.197	0% 63% 37% Stop 38 0 24 14 44 6 0.119 9.782 Yes 366 7.547 0.12	100% 0% 0% Stop 73 73 0 0 84 6 0.213 9.143 Yes 393 6.893 0.214	0% 100% 0% Stop 273 0 273 0 314 6 0.753 8.627 Yes 421 6.376 0.746	0% 89% 11% Stop 154 0 137 17 177 6 0.419 8.547 Yes 422 6.296 0.419	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.378 Yes 382 7.13 0.008	0% 100% 0% Stop 204 0 204 0 234 6 0.577 8.861 Yes 408 6.612 0.574	0% 46% 54% Stop 221 0 102 119 254 6 0.598 8.471 Yes 427 6.223 0.595	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6 0.587 9.291 Yes 389 7.041 0.586	0% 11% 89% Stop 211 0 23 188 243 6 0.549 8.152 Yes 441 5.902 0.551	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		100% 0% 0% Stop 58 58 0 0 67 6 0.196 10.559 Yes 340 8.324 0.197 15.9	0% 63% 37% Stop 38 0 24 14 44 6 0.119 9.782 Yes 366 7.547 0.12 13.9	100% 0% 0% Stop 73 73 0 0 84 6 0.213 9.143 Yes 393 6.893 0.214 14.4	0% 100% 0% Stop 273 0 273 0 314 6 0.753 8.627 Yes 421 6.376 0.746 33.4	0% 89% 11% Stop 154 0 137 17 177 6 0.419 8.547 Yes 422 6.296 0.419 17.4	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.378 Yes 382 7.13 0.008 12.2	0% 100% 0% Stop 204 0 204 0 234 6 0.577 8.861 Yes 408 6.612 0.574 23.1	0% 46% 54% Stop 221 0 102 119 254 6 0.598 8.471 Yes 427 6.223 0.595 23.1	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6 0.587 9.291 Yes 389 7.041 0.586 24.5	0% 11% 89% Stop 211 0 23 188 243 6 0.549 8.152 Yes 441 5.902 0.551 20.4	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 58 58 0 0 67 6 0.196 10.559 Yes 340 8.324 0.197	0% 63% 37% Stop 38 0 24 14 44 6 0.119 9.782 Yes 366 7.547 0.12	100% 0% 0% Stop 73 73 0 0 84 6 0.213 9.143 Yes 393 6.893 0.214	0% 100% 0% Stop 273 0 273 0 314 6 0.753 8.627 Yes 421 6.376 0.746	0% 89% 11% Stop 154 0 137 17 177 6 0.419 8.547 Yes 422 6.296 0.419	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.378 Yes 382 7.13 0.008	0% 100% 0% Stop 204 0 204 0 234 6 0.577 8.861 Yes 408 6.612 0.574	0% 46% 54% Stop 221 0 102 119 254 6 0.598 8.471 Yes 427 6.223 0.595	SBLn1 100% 0% 0% Stop 198 198 0 0 228 6 0.587 9.291 Yes 389 7.041 0.586	0% 11% 89% Stop 211 0 23 188 243 6 0.549 8.152 Yes 441 5.902 0.551	

	٠	*	1	†	ļ		
Lane Group	EBL	EBR	NBL	NBT	SBT		
Lane Configurations	ሻ	7	۲	^	† \$		
Traffic Volume (vph)	147	556	245	855	1431		
Future Volume (vph)	147	556	245	855	1431		
Turn Type	Prot	pm+ov	pm+pt	NA	NA		
Protected Phases	8	1	1	6	2		
Permitted Phases		8	6				
Detector Phase	8	1	1	6	2		
Switch Phase							
Minimum Initial (s)	7.0	5.0	5.0	16.0	16.0		
Minimum Split (s)	15.0	11.4	11.4	24.4	24.4		
Total Split (s)	21.0	21.4	21.4	88.0	66.4		
Total Split (%)	19.3%	19.6%	19.6%	80.7%	60.9%		
Yellow Time (s)	4.0	4.4	4.4	4.4	4.4		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	6.4	6.4	6.4	6.4		
Lead/Lag		Lead	Lead		Lag		
Lead-Lag Optimize?		Yes	Yes		Yes		
Recall Mode	None	None	None	C-Max	C-Max		
Act Effct Green (s)	13.2	36.0	83.4	83.4	60.2		
Actuated g/C Ratio	0.12	0.33	0.77	0.77	0.55		
v/c Ratio	0.74	1.11	0.77	0.34	0.86		
Control Delay	66.6	106.3	44.0	4.6	26.2		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	66.6	106.3	44.0	4.6	26.2		
LOS	E	F	D	Α.	C C		
Approach Delay	98.0			13.4	26.2		
Approach LOS	50.0 F			В	C C		
••							
Intersection Summary							
Cycle Length: 109	^						
Actuated Cycle Length: 10		0DT :	0.1.5=:	01 1	, ,,		
Offset: 0 (0%), Referenced	to phase 2	:SBT and	6:NBTL,	Start of Y	ellow		
Natural Cycle: 100							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 1.11							
Intersection Signal Delay:					ntersection		
Intersection Capacity Utiliz	ation 88.2%	1		10	CU Level o	f Service E	
Analysis Period (min) 15							
Splits and Phases: 105:	NW 97th Av	venue & N	<u>IW 17</u> th 9	Street			
\$ 01	₩ Ø2 (F	2)					
21.4s	66.4s	·)					
Tacm)							
Ø6 (R)							

	•	*	1	†	↓
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	158	598	263	919	1657
v/c Ratio	0.74	1.11	0.77	0.34	0.86
Control Delay	66.6	106.3	44.0	4.6	26.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	66.6	106.3	44.0	4.6	26.2
Queue Length 50th (ft)	107	~468	127	95	488
Queue Length 95th (ft)	#182	#688	#268	122	602
Internal Link Dist (ft)	997			269	190
Turn Bay Length (ft)			100		
Base Capacity (vph)	243	539	341	2708	1936
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.65	1.11	0.77	0.34	0.86

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	*	1	1	Ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	7	7	×	^	↑ ↑		
Traffic Volume (veh/h)	147	556	245	855	1431	110	
Future Volume (veh/h)	147	556	245	855	1431	110	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.98	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	158	598	263	919	1539	118	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	245	331	314	2660	2067	157	
Arrive On Green	0.14	0.14	0.07	1.00	0.82	0.82	
Sat Flow, veh/h	1781	1585	1781	3647	3433	254	
Grp Volume(v), veh/h	158	598	263	919	813	844	
Grp Sat Flow(s),veh/h/ln	1781	1585	1781	1777	1777	1817	
Q Serve(g_s), s	9.1	15.0	5.5	0.2	22.6	23.4	
Cycle Q Clear(g_c), s	9.1	15.0	5.5	0.2	22.6	23.4	
Prop In Lane	1.00	1.00	1.00			0.14	
ane Grp Cap(c), veh/h	245	331	314	2660	1100	1124	
V/C Ratio(X)	0.64	1.81	0.84	0.35	0.74	0.75	
Avail Cap(c_a), veh/h	245	331	433	2660	1100	1124	
HCM Platoon Ratio	1.00	1.00	1.00	1.33	1.33	1.33	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Jniform Delay (d), s/veh	44.5	43.1	17.4	0.1	5.7	5.7	
ncr Delay (d2), s/veh	5.2	375.2	7.4	0.4	4.5	4.6	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	4.4	43.3	5.0	0.2	5.5	5.8	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d),s/veh	49.7	418.4	24.8	0.4	10.2	10.4	
nGrp LOS	D	F	C	Α	В	В	
Approach Vol, veh/h	756			1182	1657		
Approach Delay, s/veh	341.3			5.9	10.3		
Approach LOS	F			A	В		
imer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	14.1	73.9				88.0	21.0
Change Period (Y+Rc), s	6.4	6.4				6.4	6.0
Max Green Setting (Gmax), s	15.0	60.0				81.6	15.0
Max Q Clear Time (g_c+l1), s	7.5	25.4				2.2	17.0
Green Ext Time (p_c), s	0.2	5.1				2.8	0.0
ntersection Summary							
ICM 6th Ctrl Delay			78.4				
HCM 6th LOS			Е				

	•	•	†	>	ļ	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	, j	7	ተተ _ጉ	7	ተተተ	
Fraffic Volume (vph)	340	204	1018	248	1375	
-uture Volume (vph)	340	204	1018	248	1375	
Turn Type	Prot	Prot	NA	pm+pt	NA	
Protected Phases	4	4	6	5	2	
Permitted Phases		4		2		
Detector Phase	4	4	6	5	2	
Switch Phase						
Minimum Initial (s)	7.0	7.0	16.0	5.0	16.0	
Minimum Split (s)	24.1	24.1	24.8	11.8	24.8	
Total Split (s)	24.2	24.2	124.0	21.8	145.8	
Total Split (%)	14.2%	14.2%	72.9%	12.8%	85.8%	
fellow Time (s)	4.0	4.0	4.4	4.4	4.4	
All-Red Time (s)	2.1	2.1	2.4	2.4	2.4	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Fotal Lost Time (s)	6.1	6.1	6.8	6.8	6.8	
_ead/Lag	•	• • • • • • • • • • • • • • • • • • • •	Lag	Lead	0.0	
_ead-Lag Optimize?			Yes	Yes		
Recall Mode	None	None	C-Max	None	C-Max	
Act Effct Green (s)	18.1	18.1	121.7	139.0	139.0	
Actuated g/C Ratio	0.11	0.11	0.72	0.82	0.82	
//c Ratio	1.93	0.71	0.35	0.73	0.35	
Control Delay	471.0	35.3	9.3	16.4	4.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	471.0	35.3	9.3	16.4	4.2	
-OS	F	D	A	В	Α	
Approach Delay	307.7		9.3		6.1	
Approach LOS	F		Α		A	
ntersection Summary						
Cycle Length: 170						
Actuated Cycle Length: 17	0					
Offset: 87 (51%), Reference		2:SBTL	and 6:NB	T. Start o	of Yellow	
Natural Cycle: 65				,		
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 1.93						
ntersection Signal Delay:	56.2			lı.	ntersection	n LOS: E
ntersection Capacity Utiliz)				of Service C
Analysis Period (min) 15		, 		•	2010.	5. 05.11.00 0
Splits and Phases: 101:	NW 107th /	Avenue &	NW 19th	Street		
\.				3501		13
♥ Ø2 (R) 145.8 s						24.2 s
\ A						27,23
⁷ Ø5 Ø6	(R)					

	✓	•	†	>	ļ
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	362	217	1259	264	1463
v/c Ratio	1.93	0.71	0.35	0.73	0.35
Control Delay	471.0	35.3	9.3	16.4	4.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	471.0	35.3	9.3	16.4	4.2
Queue Length 50th (ft)	~618	64	172	54	130
Queue Length 95th (ft)	#832	167	217	85	145
Internal Link Dist (ft)	720		370		397
Turn Bay Length (ft)				150	
Base Capacity (vph)	188	307	3570	403	4157
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.93	0.71	0.35	0.66	0.35

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	4	<u>†</u>	<i>></i>	/	
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	ተተኈ		ሻ	ተተተ
Traffic Volume (veh/h)	340	204	1018	165	248	1375
Future Volume (veh/h)	340	204	1018	165	248	1375
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	362	217	1083	176	264	1463
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	190	169	3210	521	413	4175
Arrive On Green	0.11	0.11	0.73	0.73	0.05	0.82
Sat Flow, veh/h	1781	1585	4579	716	1781	5274
	362	217	836	423	264	1463
Grp Volume(v), veh/h						
Grp Sat Flow(s),veh/h/ln	1781	1585	1702	1722	1781	1702
Q Serve(g_s), s	18.1	18.1	15.0	15.1	6.2	12.4
Cycle Q Clear(g_c), s	18.1	18.1	15.0	15.1	6.2	12.4
Prop In Lane	1.00	1.00	0.4=0	0.42	1.00	
Lane Grp Cap(c), veh/h	190	169	2478	1254	413	4175
V/C Ratio(X)	1.91	1.29	0.34	0.34	0.64	0.35
Avail Cap(c_a), veh/h	190	169	2478	1254	481	4175
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	75.9	76.0	8.3	8.3	6.6	4.0
Incr Delay (d2), s/veh	428.0	165.8	0.4	0.7	1.3	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	30.9	22.9	5.6	5.9	2.3	4.0
Unsig. Movement Delay, s/vel	n					
LnGrp Delay(d),s/veh	503.9	241.8	8.7	9.1	7.9	4.2
LnGrp LOS	F	F	Α	Α	Α	Α
Approach Vol, veh/h	579		1259			1727
Approach Delay, s/veh	405.7		8.8			4.8
Approach LOS	+03.7		Α			4.0 A
•	-					
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		145.8		24.2	15.3	130.5
Change Period (Y+Rc), s		6.8		6.1	6.8	6.8
Max Green Setting (Gmax), s		139.0		18.1	15.0	117.2
Max Q Clear Time (g_c+l1), s		14.4		20.1	8.2	17.1
Green Ext Time (p_c), s		13.6		0.0	0.2	9.7
Intersection Summary						
•			71.2			
HCM 6th LOS			71.3			
HCM 6th LOS			Е			

Note Configurations Configurations
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBT SBR SBT SBR SBT SBR SBT
Traffic Vol, veh/h
Traffic Vol, veh/h
Traffic Vol, veh/h
Future Vol, veh/h 2 439 33 160 422 4 20 0 73 5 3 13 Conflicting Peds, #/hr 0 0 3 0
Conflicting Peds, #/hr O O O O O O O O O
Sign Control Free None - None - None - None - None - - None - - None -
RT Channelized - - None - - None - - None Storage Length - - 125 -
Storage Length - - 125 -
Weh in Median Storage, # 0 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 0 - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 0 - - 0 0 - - 0 0 - 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Grade, % - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 0 - - 0 0 - 2 0 8 86 </td
Peak Hour Factor 86
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2
Mymt Flow 2 510 38 186 491 5 23 0 85 6 3 15 Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 496 0 0 551 0 0 1155 1404 277 1125 1421 248 Stage 1 - - - - - - 536 536 - 866 866 - Stage 2 - - - - - 619 868 - 259 555 - Critical Hdwy 4.14 - - 4.14 - - 5 5 4.5 5 5 4.5 Critical Hdwy Stg 1 - - - - - 5 5 5 5 5 5 - 5 5 - 5 5 - - 7 - - -
Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 496 0 0 551 0 0 1155 1404 277 1125 1421 248 Stage 1 - - - - - - 536 536 - 866 866 - Stage 2 - - - - - 619 868 - 259 555 - Critical Hdwy 4.14 - - 4.14 - - 5 5 4.5 5 5 4.5 Critical Hdwy Stg 1 - - - - - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 - - - - - - - - - - - - - - - - -
Conflicting Flow All 496 0 0 551 0 0 1155 1404 277 1125 1421 248 Stage 1 - - - - - - 536 536 - 866 866 - Stage 2 - - - - - 619 868 - 259 555 - Critical Hdwy 4.14 - - 4.14 - - 5 5 4.5 5 5 4.5 Critical Hdwy Stg 1 - - - - - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - - - - 5 5 - 5 5 - - 5 5 - 5 5 - - - - - - - - - - <
Conflicting Flow All 496 0 0 551 0 0 1155 1404 277 1125 1421 248 Stage 1 - - - - - - 536 536 - 866 866 - Stage 2 - - - - - 619 868 - 259 555 - Critical Hdwy 4.14 - - 4.14 - - 5 5 4.5 5 5 4.5 Critical Hdwy Stg 1 - - - - - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - - <
Stage 1 - - - - 536 536 - 866 866 - Stage 2 - - - - - 619 868 - 259 555 - Critical Hdwy 4.14 - - 4.14 - - 5 5 4.5 5 5 4.5 Critical Hdwy Stg 1 - - - - - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - - 5 5 - - 5 5 - - 5 5 - - 5 5 - - 5 5 - - 5 5 - - 5 5 - - 5 5 - - 5 5 - - 5 5 - - - - - - - - - - - - - </td
Stage 2 - - - - 619 868 - 259 555 - Critical Hdwy 4.14 - - 4.14 - - 5 5 4.5 5 4.5 Critical Hdwy Stg 1 - - - - - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - 5 5 - - 5 - - 5 5 - - 5 -
Critical Hdwy 4.14 - - 4.14 - - 5 5 4.5 5 5 4.5 Critical Hdwy Stg 1 - - - - - 5 5 - 5 5 - <
Critical Hdwy Stg 1 - - - - - 5 5 - 5 5 - Critical Hdwy Stg 2 - - - - - 5 5 - 5 5 - Follow-up Hdwy 2.22 - - 2.22 - - 3 1 3 1 3 1
Critical Hdwy Stg 2 - - - - 5 5 - 5 5 - Follow-up Hdwy 2.22 - - 2.22 - - 3
Follow-up Hdwy 2.22 - 2.22 - 3 3 3 3 3 3 3 3 3 9 Pot Cap-1 Maneuver 1064 - 1015 - 376 290 951 388 285 974 Stage 1 707 707 - 506 506 - Stage 2 650 505 - 931 693 - Platoon blocked, %
Pot Cap-1 Maneuver 1064 - - 1015 - - 376 290 951 388 285 974 Stage 1 - - - - 707 707 - 506 506 - Stage 2 - - - - 650 505 - 931 693 - Platoon blocked, % - - - - - - - - - - - 931 693 - - - - - - 931 693 -
Stage 1 - - - - - 707 707 - 506 506 - Stage 2 - - - - 650 505 - 931 693 - Platoon blocked, % -
Stage 2 - - - - 650 505 - 931 693 - Platoon blocked, % -
Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 1064 - - 1012 - - 314 235 948 303 231 974 Mov Cap-2 Maneuver
Mov Cap-1 Maneuver 1064 - - 1012 - - 314 235 948 303 231 974 Mov Cap-2 Maneuver - - - - - 408 331 - 394 310 - Stage 1 - - - - - 703 703 - 504 413 -
Mov Cap-2 Maneuver 408 331 - 394 310 - Stage 1 703 703 - 504 413 -
Stage 1 703 703 - 504 413 -
Stage 2 518 412 - 845 689 -
Approach EB WB NB SB
HCM Control Delay, s 0 2.6 10.7 11.4
HCM LOS B B
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1
Capacity (veh/h) 738 1064 1012 588 HCM Lane V/C Ratio 0.147 0.002 0.184 0.042
HCM Control Delay (s) 10.7 8.4 9.4 11.4

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIK	WDL	↑ ↑	NDL	NDIX
Traffic Vol, veh/h	501	42	0	77 571	0	43
Future Vol, veh/h	501	42	0	571	0	43
<u> </u>	0	0	0	0	0	43
Conflicting Peds, #/hr	Free	Free	Free	Free	Stop	
Sign Control RT Channelized						Stop
	-		-	ivone	-	None
Storage Length		-	-	-	-	0
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	604	51	0	688	0	52
Major/Minor Ma	ajor1	N	Major2	N	/linor1	
Conflicting Flow All	0	0	-		-	328
Stage 1	-	-		-	-	320
•						
Stage 2	-	-	-	-	-	4.5
Critical Hdwy	-	-	-	-	-	4.5
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3
Pot Cap-1 Maneuver	-	-	0	-	0	910
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	-	-	-	910
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.2	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBT	
Capacity (veh/h)		910	_		_	
HCM Lane V/C Ratio		0.057	-	_	_	
HCM Control Delay (s)		9.2	_	_	_	
rioin Control Dolay (3)						
		Δ	_	_	_	
HCM Lane LOS HCM 95th %tile Q(veh)		0.2	-	-	-	

Intersection	25.0											
Intersection Delay, s/veh	25.3											
Intersection LOS	D											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†		7	†		7	1		7	1	
Traffic Vol, veh/h	90	425	17	3	321	119	58	24	14	198	23	193
Future Vol, veh/h	90	425	17	3	321	119	58	24	14	198	23	193
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	103	489	20	3	369	137	67	28	16	228	26	222
Number of Lanes	1	2	0	1	2	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	3			3			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			3			3		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			3			3		
HCM Control Delay	28.2			25.2			15.5			23.8		
HCM LOS	D			D			С			С		
Lane		NBLn1	NBLn2	EBLn1	EBLn2	EBLn3	WBLn1	WBLn2	WBLn3	SBLn1	SBLn2	
Lane Vol Left, %		NBLn1 100%	NBLn2	EBLn1 100%	EBLn2	EBLn3	WBLn1 100%	WBLn2	WBLn3	SBLn1 100%	SBLn2	
											0% 11%	
Vol Left, %		100%	0%	100%	0%	0%	100%	0%	0%	100%	0%	
Vol Left, % Vol Thru, %		100% 0%	0% 63%	100% 0%	0% 100%	0% 89%	100% 0%	0% 100%	0% 47% 53% Stop	100% 0%	0% 11%	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 58	0% 63% 37% Stop 38	100% 0% 0% Stop 90	0% 100% 0%	0% 89% 11%	100% 0% 0% Stop 3	0% 100% 0%	0% 47% 53% Stop 226	100% 0% 0% Stop 198	0% 11% 89% Stop 216	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 58 58	0% 63% 37% Stop 38	100% 0% 0% Stop 90	0% 100% 0% Stop 283	0% 89% 11% Stop 159	100% 0% 0% Stop 3	0% 100% 0% Stop 214	0% 47% 53% Stop 226 0	100% 0% 0% Stop 198 198	0% 11% 89% Stop 216	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 58 58	0% 63% 37% Stop 38 0 24	100% 0% 0% Stop 90 90	0% 100% 0% Stop 283 0 283	0% 89% 11% Stop 159 0	100% 0% 0% Stop 3 3	0% 100% 0% Stop 214 0 214	0% 47% 53% Stop 226 0 107	100% 0% 0% Stop 198 198	0% 11% 89% Stop 216 0 23	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		100% 0% 0% Stop 58 58 0	0% 63% 37% Stop 38 0 24	100% 0% 0% Stop 90 90	0% 100% 0% Stop 283 0 283	0% 89% 11% Stop 159 0 142 17	100% 0% 0% Stop 3 3 0	0% 100% 0% Stop 214 0 214	0% 47% 53% Stop 226 0 107 119	100% 0% 0% Stop 198 198 0	0% 11% 89% Stop 216 0 23 193	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 58 58 0 0	0% 63% 37% Stop 38 0 24 14	100% 0% 0% Stop 90 90 0	0% 100% 0% Stop 283 0 283 0	0% 89% 11% Stop 159 0 142 17	100% 0% 0% Stop 3 3 0	0% 100% 0% Stop 214 0 214 0 246	0% 47% 53% Stop 226 0 107 119 260	100% 0% 0% Stop 198 198 0	0% 11% 89% Stop 216 0 23 193 248	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		100% 0% 0% Stop 58 58 0 0	0% 63% 37% Stop 38 0 24 14 44	100% 0% 0% Stop 90 0 0	0% 100% 0% Stop 283 0 283 0 326	0% 89% 11% Stop 159 0 142 17 182	100% 0% 0% Stop 3 3 0 0	0% 100% 0% Stop 214 0 214 0 246	0% 47% 53% Stop 226 0 107 119 260 6	100% 0% 0% Stop 198 198 0 0 228	0% 11% 89% Stop 216 0 23 193 248	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		100% 0% 0% Stop 58 58 0 0 67 6	0% 63% 37% Stop 38 0 24 14 44 6	100% 0% 0% Stop 90 0 0 103 6	0% 100% 0% Stop 283 0 283 0 326 6	0% 89% 11% Stop 159 0 142 17 182 6	100% 0% 0% Stop 3 3 0 0 0 3 6	0% 100% 0% Stop 214 0 214 0 246 6	0% 47% 53% Stop 226 0 107 119 260 6 0.626	100% 0% 0% Stop 198 198 0 0 228 6	0% 11% 89% Stop 216 0 23 193 248 6	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		100% 0% 0% Stop 58 58 0 0 67 6 0.201 10.835	0% 63% 37% Stop 38 0 24 14 44 6 0.122 10.057	100% 0% 0% Stop 90 0 0 103 6 0.267 9.286	0% 100% 0% Stop 283 0 283 0 326 6 0.793 8.769	0% 89% 11% Stop 159 0 142 17 182 6 0.44 8.691	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.572	0% 100% 0% Stop 214 0 214 0 246 6 0.619 9.054	0% 47% 53% Stop 226 0 107 119 260 6 0.626 8.673	100% 0% 0% Stop 198 198 0 0 228 6 0.601 9.51	0% 11% 89% Stop 216 0 23 193 248 6 0.577 8.368	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		100% 0% 0% Stop 58 58 0 0 67 6 0.201 10.835 Yes	0% 63% 37% Stop 38 0 24 14 44 6 0.122 10.057 Yes	100% 0% 0% Stop 90 0 0 0 103 6 0.267 9.286 Yes	0% 100% 0% Stop 283 0 283 0 326 6 0.793 8.769 Yes	0% 89% 11% Stop 159 0 142 17 182 6 0.44 8.691 Yes	100% 0% 0% Stop 3 3 0 0 0 0 3 6 0.009 9.572 Yes	0% 100% 0% Stop 214 0 214 0 246 6 0.619 9.054 Yes	0% 47% 53% Stop 226 0 107 119 260 6 0.626 8.673 Yes	100% 0% 0% Stop 198 198 0 0 228 6 0.601 9.51 Yes	0% 11% 89% Stop 216 0 23 193 248 6 0.577 8.368 Yes	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		100% 0% 0% Stop 58 0 0 67 6 0.201 10.835 Yes 331	0% 63% 37% Stop 38 0 24 14 44 6 0.122 10.057 Yes 356	100% 0% 0% Stop 90 0 0 103 6 0.267 9.286 Yes 387	0% 100% 0% Stop 283 0 283 0 326 6 0.793 8.769 Yes 414	0% 89% 11% Stop 159 0 142 17 182 6 0.44 8.691 Yes 414	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.572 Yes 374	0% 100% 0% Stop 214 0 214 0 246 6 0.619 9.054 Yes 398	0% 47% 53% Stop 226 0 107 119 260 6 0.626 8.673 Yes 416	100% 0% 0% Stop 198 198 0 0 228 6 0.601 9.51 Yes 380	0% 11% 89% Stop 216 0 23 193 248 6 0.577 8.368 Yes 432	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		100% 0% 0% Stop 58 58 0 0 67 6 0.201 10.835 Yes 331 8.61	0% 63% 37% Stop 38 0 24 14 44 6 0.122 10.057 Yes 356 7.831	100% 0% 0% Stop 90 0 0 103 6 0.267 9.286 Yes 387 7.042	0% 100% 0% Stop 283 0 283 0 326 6 0.793 8.769 Yes 414 6.525	0% 89% 11% Stop 159 0 142 17 182 6 0.44 8.691 Yes 414 6.448	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.572 Yes 374 7.332	0% 100% 0% Stop 214 0 214 0 246 6 0.619 9.054 Yes 398 6.814	0% 47% 53% Stop 226 0 107 119 260 6 0.626 8.673 Yes 416 6.432	100% 0% 0% Stop 198 198 0 0 228 6 0.601 9.51 Yes 380 7.269	0% 11% 89% Stop 216 0 23 193 248 6 0.577 8.368 Yes 432 6.127	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 58 58 0 0 67 6 0.201 10.835 Yes 331 8.61 0.202	0% 63% 37% Stop 38 0 24 14 44 6 0.122 10.057 Yes 356 7.831 0.124	100% 0% 0% Stop 90 0 0 103 6 0.267 9.286 Yes 387 7.042 0.266	0% 100% 0% Stop 283 0 283 0 326 6 0.793 8.769 Yes 414 6.525 0.787	0% 89% 11% Stop 159 0 142 17 182 6 0.44 8.691 Yes 414 6.448 0.44	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.572 Yes 374 7.332 0.008	0% 100% 0% Stop 214 0 214 0 246 6 0.619 9.054 Yes 398 6.814 0.618	0% 47% 53% Stop 226 0 107 119 260 6 0.626 8.673 Yes 416 6.432 0.625	100% 0% 0% Stop 198 198 0 0 228 6 0.601 9.51 Yes 380 7.269 0.6	0% 11% 89% Stop 216 0 23 193 248 6 0.577 8.368 Yes 432 6.127 0.574	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		100% 0% 0% Stop 58 58 0 0 67 6 0.201 10.835 Yes 331 8.61 0.202 16.3	0% 63% 37% Stop 38 0 24 14 44 6 0.122 10.057 Yes 356 7.831 0.124 14.2	100% 0% 0% Stop 90 0 0 103 6 0.267 9.286 Yes 387 7.042 0.266 15.4	0% 100% 0% Stop 283 0 283 0 326 6 0.793 8.769 Yes 414 6.525 0.787 37.9	0% 89% 11% Stop 159 0 142 17 182 6 0.44 8.691 Yes 414 6.448 0.44 18.1	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.572 Yes 374 7.332 0.008 12.4	0% 100% 0% Stop 214 0 214 0 246 6 0.619 9.054 Yes 398 6.814 0.618 25.5	0% 47% 53% Stop 226 0 107 119 260 6 0.626 8.673 Yes 416 6.432 0.625 25	100% 0% 0% Stop 198 198 0 0 228 6 0.601 9.51 Yes 380 7.269 0.6 25.7	0% 11% 89% Stop 216 0 23 193 248 6 0.577 8.368 Yes 432 6.127 0.574 22	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 58 58 0 0 67 6 0.201 10.835 Yes 331 8.61 0.202	0% 63% 37% Stop 38 0 24 14 44 6 0.122 10.057 Yes 356 7.831 0.124	100% 0% 0% Stop 90 0 0 103 6 0.267 9.286 Yes 387 7.042 0.266	0% 100% 0% Stop 283 0 283 0 326 6 0.793 8.769 Yes 414 6.525 0.787	0% 89% 11% Stop 159 0 142 17 182 6 0.44 8.691 Yes 414 6.448 0.44	100% 0% 0% Stop 3 3 0 0 0 3 6 0.009 9.572 Yes 374 7.332 0.008	0% 100% 0% Stop 214 0 214 0 246 6 0.619 9.054 Yes 398 6.814 0.618	0% 47% 53% Stop 226 0 107 119 260 6 0.626 8.673 Yes 416 6.432 0.625	100% 0% 0% Stop 198 198 0 0 228 6 0.601 9.51 Yes 380 7.269 0.6	0% 11% 89% Stop 216 0 23 193 248 6 0.577 8.368 Yes 432 6.127 0.574	

	٠	•	1	†	Ţ	
Lane Group	EBL	EBR	NBL	NBT	SBT	
Lane Configurations	*	7	*	^	† 1>	
Traffic Volume (vph)	152	566	254	855	1431	
Future Volume (vph)	152	566	254	855	1431	
Turn Type	Prot	pm+ov	pm+pt	NA	NA	
Protected Phases	8	1	1	6	2	
Permitted Phases		8	6			
Detector Phase	8	1	1	6	2	
Switch Phase						
Minimum Initial (s)	7.0	5.0	5.0	16.0	16.0	
Minimum Split (s)	15.0	11.4	11.4	24.4	24.4	
Total Split (s)	21.0	21.4	21.4	88.0	66.4	
Total Split (%)	19.3%	19.6%	19.6%	80.7%	60.9%	
Yellow Time (s)	4.0	4.4	4.4	4.4	4.4	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.4	6.4	6.4	6.4	
Lead/Lag	0.0	Lead	Lead	0.4	Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	C-Max	C-Max	
Act Effct Green (s)	13.4	36.0	83.2	83.2		
					60.2	
Actuated g/C Ratio	0.12	0.33	0.76	0.76	0.55	
v/c Ratio	0.75	1.13	0.81	0.34	0.86	
Control Delay	67.4	113.4	48.0	4.7	26.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	67.4	113.4	48.0	4.7	26.4	
LOS	E	F	D	Α	С	
Approach Delay	103.7			14.6	26.4	
Approach LOS	F			В	С	
Intersection Summary						
Cycle Length: 109						
Actuated Cycle Length: 10)9					
Offset: 0 (0%), Referenced	d to phase 2	:SBT and	6:NBTL,	Start of Y	'ellow	
Natural Cycle: 100						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 1.13						
Intersection Signal Delay:	39.0			li	ntersection	n LOS: D
Intersection Capacity Utiliz)				of Service E
Analysis Period (min) 15						
Splits and Phases: 105:	: NW 97th Av	vanua & N	J\// 17th (Stroot		
-	T T	venue & r	NVV 17til C	Jueer		
3 Ø1	▼ Ø2 (F	२)				•
21.4s	66.4s					
1 Ø6 (R)						• ♣ ø8
1 20 (K)						216

	۶	•	1	†	ļ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	163	609	273	919	1664
v/c Ratio	0.75	1.13	0.81	0.34	0.86
Control Delay	67.4	113.4	48.0	4.7	26.4
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	67.4	113.4	48.0	4.7	26.4
Queue Length 50th (ft)	110	~484	136	97	493
Queue Length 95th (ft)	#196	#706	#286	122	607
Internal Link Dist (ft)	997			269	190
Turn Bay Length (ft)			100		
Base Capacity (vph)	243	539	338	2702	1936
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.67	1.13	0.81	0.34	0.86

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	*	4	†	ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	7	7	*	^	↑ ↑			
Traffic Volume (veh/h)	152	566	254	855	1431	116		
Future Volume (veh/h)	152	566	254	855	1431	116		
nitial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.98		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No			No	No			
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	163	609	273	919	1539	125		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	245	335	315	2660	2049	165		
Arrive On Green	0.14	0.14	0.07	1.00	0.82	0.82		
Sat Flow, veh/h	1781	1585	1781	3647	3417	268		
Grp Volume(v), veh/h	163	609	273	919	817	847		
Grp Sat Flow(s), veh/h/ln	1781	1585	1781	1777	1777	1814		
Q Serve(g_s), s	9.5	15.0	5.8	0.2	23.2	24.2		
Cycle Q Clear(g_c), s	9.5	15.0	5.8	0.2	23.2	24.2		
Prop In Lane	1.00	1.00	1.00			0.15		
ane Grp Cap(c), veh/h	245	335	315	2660	1095	1118		
//C Ratio(X)	0.66	1.82	0.87	0.35	0.75	0.76		
Avail Cap(c_a), veh/h	245	335	429	2660	1095	1118		
HCM Platoon Ratio	1.00	1.00	1.00	1.33	1.33	1.33		
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Jniform Delay (d), s/veh	44.6	43.0	18.2	0.1	5.9	5.9		
ncr Delay (d2), s/veh	6.1	380.8	10.5	0.4	4.6	4.8		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	4.6	44.3	5.4	0.2	5.7	5.9		
Jnsig. Movement Delay, s/veh								
_nGrp Delay(d),s/veh	50.7	423.8	28.7	0.4	10.5	10.8		
.nGrp LOS	D	F	С	Α	В	В		
Approach Vol, veh/h	772			1192	1664			
Approach Delay, s/veh	345.0			6.9	10.6			
Approach LOS	F			A	В			
Fimer - Assigned Phs	1	2				6	8	
	1/1/							
Phs Duration (G+Y+Rc), s	14.4	73.6				88.0	21.0	
Change Period (Y+Rc), s	6.4	6.4				6.4	6.0	
Max Green Setting (Gmax), s	15.0	60.0				81.6	15.0	
Max Q Clear Time (g_c+l1), s	7.8	26.2				2.2	17.0	
Green Ext Time (p_c), s	0.3	5.2				2.8	0.0	
Intersection Summary								
HCM 6th Ctrl Delay			80.6					
HCM 6th LOS			F					

Lane Group		•	•	†	/	↓			
Traffic Volume (vph) 340 204 1018 248 1375 Future Volume (vph) 340 204 1018 248 1375 Turn Type Prot pt+ov NA pm+pt NA Protected Phases 4 4 5 6 5 2 Permitted Phases 2 2 Detector Phase 4 4 5 6 5 2 Switch Phase Minimum Initial (s) 7.0 16.0 5.0 16.0 Minimum Split (s) 24.2 24.8 11.8 24.8 Total Split (s) 34.2 114.0 21.8 135.8 Total Split (s) 34.2 114.0 21.8 135.8 Total Split (s) 20.1% 67.1% 12.8% 79.9% Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead/Lag Lag Lead Lead-Lag Optimize? Recall Mode None Act Effct Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach LOS F B C A Approach LOS F B C A Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Lane Group	WBL	WBR	NBT	SBL	SBT			
Future Volume (vph) 340 204 1018 248 1375 Turn Type Prot pt+ov NA pm+pt NA Protected Phases 4 4 5 6 5 2 Permitted Phases 2 Detector Phase 4 4 5 6 5 2 Switch Phase Minimum Initial (s) 7.0 16.0 5.0 16.0 Minimum Split (s) 24.2 24.8 11.8 24.8 Total Split (s) 34.2 114.0 21.8 135.8 Total Split (%) 20.1% 67.1% 12.8% 79.9% Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead/Lag Versel Lag Lead Lead/Lag Optimize? Yes Yes Recall Mode None C-Max Act Effet Green (s) 28.1 46.6 110.5 129.0 129.0 Act Letted g/C Ratio 0.17 0.27 0.65 0.76 0.76 V/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B B C A Approach Lost Sylveh) 127.7 14.1 29.7 Approach Losy F B C B B C A Approach Losy (s/veh) 127.7 14.1 29.7 Approach Los F C B B C A Approach Los F C B B C A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum V/c Ratio: 1.24 Maximum V/c Ratio: 1.24	Lane Configurations	7	7	ተተጉ	7	**			
Turn Type Prote pt+ov NA pm+pt NA Protected Phases 4 4 5 6 5 2 Permitted Phases 2 Detector Phase 4 4 5 6 5 2 Switch Phase Minimum Initial (s) 7.0 16.0 5.0 16.0 Minimum Split (s) 24.2 24.8 11.8 24.8 Total Split (s) 34.2 114.0 21.8 135.8 Total Split (s) 20.1% 67.1% 12.8% 79.9% Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	Traffic Volume (vph)	340	204	1018	248	1375			
Protected Phases	Future Volume (vph)	340	204	1018	248	1375			
Permitted Phases 2 2	Turn Type	Prot	pt+ov	NA	pm+pt	NA			
Detector Phase 4 4 5 6 5 2	Protected Phases	4	4 5	6		2			
Switch Phase Minimum Initial (s) 7.0 16.0 5.0 16.0 Minimum Split (s) 24.2 24.8 11.8 24.8 Total Split (s) 34.2 114.0 21.8 135.8 Total Split (%) 20.1% 67.1% 12.8% 79.9% Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead/Lag Lag Lead Lead Lost Time (s) 6.1 6.8 6.8 6.8 Lead Lost Time (s) 6.1 6.8 6.8 6.8 6.8 Lead/Lag Lag Lead Lead Lost Time (s) 6.1 6.8 6.8 6.8 6.8 Recall Mode None C-Max None C-Max Act Effet Green (s) 28.1 46.6 110.5 129.0 129.0 Act Effet Green (s) 28.1 46.6 110.5 <td>Permitted Phases</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td>	Permitted Phases				2				
Minimum Initial (s) 7.0 16.0 5.0 16.0 Minimum Split (s) 24.2 24.8 11.8 24.8 Total Split (s) 34.2 114.0 21.8 135.8 Total Split (%) 20.1% 67.1% 12.8% 79.9% Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead-Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode None C-Max None C-Max Act Leffet Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 V/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0	Detector Phase	4	4 5	6	5	2			
Minimum Split (s) 24.2 24.8 11.8 24.8 Total Split (s) 34.2 114.0 21.8 135.8 Total Split (%) 20.1% 67.1% 12.8% 79.9% Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead/Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None C-Max None C-Max Act Effet Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Switch Phase								
Total Split (s) 34.2 114.0 21.8 135.8 Total Split (%) 20.1% 67.1% 12.8% 79.9% Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None C-Max None C-Max Act Effet Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 V/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum V/c Ratio: 1.24	Minimum Initial (s)					16.0			
Total Split (%) 20.1% 67.1% 12.8% 79.9% Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead/Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None C-Max None C-Max Act Effet Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24									
Yellow Time (s) 4.0 4.4 4.4 4.4 All-Red Time (s) 2.1 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead/Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Recall Mode None C-Max None C-Max Act Effct Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
All-Red Time (s) 2.1 2.4 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 6.8 Lead/Lag Lag Lead Lead-Lag Optimize? Yes Recall Mode Act Effct Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Total Split (%)	20.1%		67.1%	12.8%	79.9%			
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.8 6.8 6.8 Lead/Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None C-Max None C-Max Act Effet Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Yellow Time (s)	4.0		4.4	4.4	4.4			
Total Lost Time (s) 6.1 6.8 6.8 6.8 6.8 Lead/Lag	All-Red Time (s)	2.1		2.4	2.4	2.4			
Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None C-Max None C-Max Act Effct Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Actuated Cycle: 65 Control Type: Actuated-Coordinated Asximum v/c Ratio: 1.24	Lost Time Adjust (s)	0.0		0.0	0.0	0.0			
Lead-Lag Optimize? Yes Yes Recall Mode None C-Max None C-Max Act Effct Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Total Lost Time (s)	6.1		6.8	6.8	6.8			
Recall Mode	Lead/Lag			Lag	Lead				
Act Effct Green (s) 28.1 46.6 110.5 129.0 129.0 Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Lead-Lag Optimize?			Yes	Yes				
Actuated g/C Ratio 0.17 0.27 0.65 0.76 0.76 v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Recall Mode	None		C-Max	None	C-Max			
v/c Ratio 1.24 0.42 0.39 0.77 0.38 Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Act Effct Green (s)	28.1	46.6	110.5	129.0	129.0			
Control Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 Queue Delay 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Actuated g/C Ratio	0.17	0.27	0.65	0.76	0.76			
Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	v/c Ratio	1.24	0.42	0.39	0.77	0.38			
Total Delay (s/veh) 188.7 26.0 14.1 23.1 7.3 LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Control Delay (s/veh)	188.7	26.0	14.1	23.1	7.3			
LOS F C B C A Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Queue Delay	0.0	0.0	0.0	0.0	0.0			
Approach Delay (s/veh) 127.7 14.1 9.7 Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24		188.7	26.0	14.1	23.1	7.3			
Approach LOS F B A Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	LOS	F	С		С				
Intersection Summary Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24		127.7		14.1					
Cycle Length: 170 Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Approach LOS	F		В		Α			
Actuated Cycle Length: 170 Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Intersection Summary								
Offset: 87 (51%), Referenced to phase 2:SBTL and 6:NBT, Start of Yellow Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24									
Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Actuated Cycle Length:	170							
Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.24	Offset: 87 (51%), Refere	enced to	phase	2:SBTL	and 6:	NBT, Sta	art of Yellow		
Maximum v/c Ratio: 1.24	Natural Cycle: 65								
	Control Type: Actuated-	Coordin	ated						
Intersection Signal Delay (s/yeh): 30.4	Maximum v/c Ratio: 1.24	4							
intersection signal belay (5/ven). 30.4 Intersection LOS. C	Intersection Signal Dela	y (s/veh	n): 30.4		I	ntersect	ion LOS: C		
Intersection Capacity Utilization 72.4% ICU Level of Service C	Intersection Capacity Ut	ilization	72.4%			CU Leve	el of Service C		

Splits and Phases: 101: NW 107th Avenue & NW 19th Street

Analysis Period (min) 15

	1	•	†	-	↓
Lane Group	WBL	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	362	217	1259	264	1463
v/c Ratio	1.24	0.42	0.39	0.77	0.38
Control Delay (s/veh)	188.7	26.0	14.1	23.1	7.3
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	188.7	26.0	14.1	23.1	7.3
Queue Length 50th (ft)	~498	94	222	75	182
Queue Length 95th (ft)	#712	174	267	131	203
Internal Link Dist (ft)	1456		370		397
Turn Bay Length (ft)				150	
Base Capacity (vph)	292	543	3237	372	3858
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.24	0.40	0.39	0.71	0.38

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	•	•	†	~	-	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	ተተጉ		*	ተተተ
Traffic Volume (veh/h)	340	204	1018	165	248	1375
Future Volume (veh/h)	340	204	1018	165	248	1375
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach			No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	362	217	1083	176	264	1463
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	294	357	2907	472	390	3875
Arrive On Green	0.17	0.17	0.66	0.66	0.06	0.76
Sat Flow, veh/h	1781	1585	4579	716	1781	5274
·	362					1463
Grp Volume(v), veh/h		217	836	423	264	
Grp Sat Flow(s), veh/h/ln		1585	1702	1722	1781	1702
Q Serve(g_s), s	28.1	20.9	18.9	18.9	8.0	16.5
Cycle Q Clear(g_c), s	28.1	20.9	18.9	18.9	8.0	16.5
Prop In Lane	1.00	1.00	2212	0.42	1.00	
Lane Grp Cap(c), veh/h	294	357	2243	1135	390	3875
V/C Ratio(X)	1.23	0.61	0.37	0.37	0.68	0.38
Avail Cap(c_a), veh/h	294	357	2243	1135	441	3875
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	70.9	59.1	13.1	13.1	10.4	6.9
Incr Delay (d2), s/veh	129.4	3.0	0.5	0.9	2.5	0.3
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/		18.5	7.5	7.7	3.3	5.9
Unsig. Movement Delay,						
	200.3	62.1	13.6	14.0	12.9	7.2
LnGrp LOS	F	E	В	В	В	A
Approach Vol, veh/h	579		1259			1727
• •	148.5		13.7			8.1
Approach LOS	F		13.7 B			Α
			В			
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc),	s	135.8		34.2	17.0	118.8
Change Period (Y+Rc), s	3	6.8		6.1	6.8	6.8
Max Green Setting (Gma	ax), s	129.0		28.1	15.0	107.2
Max Q Clear Time (g c+l	l1), s	18.5		30.1	10.0	20.9
Green Ext Time (p c), s	,,	13.6		0.0	0.2	9.7
U = /						
Intersection Summary			05.0			
HCM 6th Ctrl Delay, s/ve	h		32.9			
HCM 6th LOS			С			

	۶	•	•	†	↓	
Lane Group	EBL	EBR	NBL	NBT	SBT	
Lane Configurations	ሻ	7	ሻ	44	∱ ⊅	
Traffic Volume (vph)	152	566	254	855	1431	
Future Volume (vph)	152	566	254	855	1431	
Turn Type	Prot	pm+ov	pm+pt	NA	NA	
Protected Phases	8	1	1	6	2	
Permitted Phases		8	6			
Detector Phase	8	1	1	6	2	
Switch Phase						
Minimum Initial (s)	7.0	5.0	5.0	16.0	16.0	
Minimum Split (s)	15.0	11.4	11.4	24.4	24.4	
Total Split (s)	23.6	21.4	21.4	85.4	64.0	
Total Split (%)	21.7%	19.6%	19.6%	78.3%	58.7%	
Yellow Time (s)	4.0	4.4	4.4	4.4	4.4	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.4	6.4	6.4	6.4	
Lead/Lag		Lead	Lead		Lag	
Lead-Lag Optimize?		Yes	Yes		Yes	
Recall Mode	None	None	None	C-Max	C-Max	
Act Effct Green (s)	14.2	38.6	82.4	82.4	57.6	
Actuated g/C Ratio	0.13	0.35	0.76	0.76	0.53	
v/c Ratio	0.71	1.06	0.75	0.34	0.90	
Control Delay	61.8	88.8	41.5	5.1	30.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	61.8	88.8	41.5	5.1	30.9	
LOS	Е	F	D	Α	С	
Approach Delay	83.1			13.4	30.9	
Approach LOS	F			В	С	
Intersection Summary						
Cycle Length: 109						
Actuated Cycle Length: 109)					
Offset: 0 (0%), Referenced		:SBT and	6:NBTL.	Start of \	/ellow	
Natural Cycle: 100			,			
Control Type: Actuated-Cod	ordinated					
Maximum v/c Ratio: 1.06						
Intersection Signal Delay: 3	6.3			lı lı	ntersection	n LOS: D
Intersection Capacity Utiliza)				of Service E
Analysis Period (min) 15						
Splits and Phases: 105: I	NW 97th Av	venue & N	NW 17th s	Street		
•						I
→ Ø1	▼ Ø2 (F	()				
21.4 s	64 s					
₹ (%)						• • • • • • • • • • • • • • • • • • •
Ø6 (R)						* ₩ ₩

	•	•	4	†	ļ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	163	609	273	919	1664
v/c Ratio	0.71	1.06	0.75	0.34	0.90
Control Delay	61.8	88.8	41.5	5.1	30.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	61.8	88.8	41.5	5.1	30.9
Queue Length 50th (ft)	110	~460	131	96	523
Queue Length 95th (ft)	178	#682	#287	137	644
Internal Link Dist (ft)	997			269	190
Turn Bay Length (ft)			100		
Base Capacity (vph)	285	574	366	2675	1852
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.57	1.06	0.75	0.34	0.90

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Movement		•	١,	ı	*	•	
	EBL	EBR	NBL	NBT	SBT	SBR	
_ane Configurations	, T	7	Ţ	^	∱ ⊅		
Traffic Volume (veh/h)	152	566	254	855	1431	116	
Future Volume (veh/h)	152	566	254	855	1431	116	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.97	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	163	609	273	919	1539	125	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	288	385	304	2576	1943	157	
Arrive On Green	0.16	0.16	0.08	0.96	0.78	0.78	
Sat Flow, veh/h	1781	1585	1781	3647	3417	268	
Grp Volume(v), veh/h	163	609	273	919	817	847	
Grp Sat Flow(s),veh/h/ln	1781	1585	1781	1777	1777	1814	
Q Serve(g_s), s	9.2	17.6	6.6	1.5	28.7	29.9	
Cycle Q Clear(g_c), s	9.2	17.6	6.6	1.5	28.7	29.9	
Prop In Lane	1.00	1.00	1.00			0.15	
ane Grp Cap(c), veh/h	288	385	304	2576	1039	1061	
V/C Ratio(X)	0.57	1.58	0.90	0.36	0.79	0.80	
Avail Cap(c_a), veh/h	288	385	404	2576	1039	1061	
HCM Platoon Ratio	1.00	1.00	1.00	1.33	1.33	1.33	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	42.2	41.3	21.3	0.6	8.2	8.4	
ncr Delay (d2), s/veh	2.2	274.0	15.7	0.4	6.0	6.3	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	4.2	39.5	5.5	0.5	7.8	8.3	
Jnsig. Movement Delay, s/veh							
_nGrp Delay(d),s/veh	44.4	315.2	37.1	1.0	14.2	14.7	
nGrp LOS	D	F	D	A	В	В	
Approach Vol, veh/h	772			1192	1664		
Approach Delay, s/veh	258.0			9.2	14.4		
Approach LOS	F			A	В		
Fimer - Assigned Phs	1	2				6	8
	15.2						
Phs Duration (G+Y+Rc), s	15.3	70.1				85.4	23.6
Change Period (Y+Rc), s	6.4	6.4				6.4	6.0
Max Green Setting (Gmax), s	15.0	57.6				79.0	17.6
Max Q Clear Time (g_c+I1), s		31.9				3.5	19.6
Green Ext Time (p_c), s	0.2	5.1				2.8	0.0
ntersection Summary							
HCM 6th Ctrl Delay			64.6				
HCM 6th LOS			Е				